Skip to main content
Log in

Toward an Alternative Therapeutic Approach for Skin Infections: Antagonistic Activity of Lactobacilli Against Antibiotic-Resistant Staphylococcus aureus and Pseudomonas aeruginosa

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The wide spread of antimicrobial resistance has urged the need of alternative therapeutic approach. In this context, probiotic lactobacilli have been reported for the prevention and treatment of many gastrointestinal and urogenital infections. However, very little is known about their antagonistic activity against skin pathogens. Accordingly, the present study aimed to investigate the potential of lactobacilli to interfere with pathogenesis features of two antibiotic-resistant skin pathogens, namely methicillin-resistant Staphylococcus aureus and multiple-resistant Pseudomonas aeruginosa. A total of 49 lactobacilli were recovered, identified and tested for their antagonistic activities against the aforementioned pathogens. Of these, eight isolates were capable of blocking the adherence of pathogens to mammalian cells independent of the skin pathogen tested or model adopted. Moreover, three Lactobacillus isolates (LRA4, LC2 and LR5) effectively prevented the pathogen internalization into epithelial cells in addition to potentiating phagocyte-mediated pathogen killing. Interestingly, the lactobacilli LC2, LF9 and LRA4 markedly inhibited the growth of P. aeruginosa and S. aureus isolates in coculture experiments. Besides, the lactobacilli LRA4, LC2, LR5 and LF9 have counteracted pathogen cytotoxicity. Taken together, the present study revealed some inhibitory activities of lactobacilli against two antibiotic-resistant skin pathogens. Moreover, it revealed two lactobacilli, namely LC2 and LRA4, with antagonistic capacity against different virulence determinants of skin pathogens. These lactobacilli are considered promising probiotic candidates that may represent an alternative therapeutic approach for skin infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McCormick A, Fleming D, Charlton J (1995) Morbidity statistics from general practice. Fourth National Study 1991–1992. London

  2. Hedrick J (2003) Acute bacterial skin infections in pediatric medicine: current issues in presentation and treatment. Paediatr Drugs 5:35–46

    Google Scholar 

  3. Iwatsuki K, Yamasaki O, Morizane S, Oono T (2006) Staphylococcal cutaneous infections: invasion, evasion and aggression. J Dermatol Sci 42:203–214

    Article  CAS  Google Scholar 

  4. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM (2005) Methicillin resistant Staphylococcus aureus disease in three communities. N Engl J Med 352:1436–1444

    Article  CAS  Google Scholar 

  5. Cogen L, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease or defence. Br J Dermatol 158:442–455

    Article  CAS  Google Scholar 

  6. Gomes MZ, Oliveira RV, Machado CR, Conceição MS, Souza CV, Lourenço MC, Asensi MD (2012) Factors associated with epidemic multiresistant Pseudomonas aeruginosa infections in a hospital with AIDS-predominant admissions. Braz J Infect Dis 16:219–225

    Article  Google Scholar 

  7. Coleman K (2004) Recent advances in the treatment of Gram-positive infections. Drug Discov Today Ther Strateg 1:455–460

    Article  CAS  Google Scholar 

  8. Courtney HS, Li Y, Dale JB, Hasty DL (1994) Cloning, sequencing, and expression of a fibronectin/fibrinogen-binding protein from group A streptococci. Infect Immun 62:3937–3946

    CAS  Google Scholar 

  9. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Food and Agricultural Organization of the United Nations and World Health Organization. Working Group Report

  10. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289

    Article  CAS  Google Scholar 

  11. Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A (1999) Persistence of colonization of human colonic mucosa by a probiotic strain Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65:351–354

    CAS  Google Scholar 

  12. Schiffrin EJ, Brassart D, Servin AL, Rochat F, Donnet-Hughes A (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr 66:515S–520S

    CAS  Google Scholar 

  13. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ (2011) Vaginal microbiome of reproductive age women. Proc Natl Acad Sci 108:4680–4687

    Article  CAS  Google Scholar 

  14. Dong Q, Nelson DE, Toh E, Diao L, Gao X, Fortenberry JD, Van der Pol B (2011) The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS One 6:e19709

    Article  CAS  Google Scholar 

  15. Collado MC, Isolauri E, Salminen S, Sanz Y (2009) The impact of probiotic on gut health. Curr Drug Metab 10:68–78

    Article  CAS  Google Scholar 

  16. Yan F, Polk DB (2010) Probiotics: progress toward novel therapies for intestinal diseases. Curr Opin Gastroenterol 26:95–101

    Article  Google Scholar 

  17. Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B (2001) Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol 30:49–52

    Article  CAS  Google Scholar 

  18. Vanderhoof JA (2008) Probiotics in allergy management. J Pediatr Gastroenterol Nutr 47:S38–S40

    Article  Google Scholar 

  19. Hafez MM, Aboulwafa MM, Yassien MA, Hassouna NA (2008) Role of different classes of mammalian cell surface molecules in adherence of coagulase positive and coagulase negative staphylococci. J Basic Microbiol 48:1–12

    Article  Google Scholar 

  20. Albiger B, Johansson L, Jonsson AB (2003) Lipooligosaccharide-deficient Neisseria meningitidis shows altered pilus-associated characteristics. Infect Immun 71:155–162

    Article  CAS  Google Scholar 

  21. Osset J, Bartolome RM, Garcia E, Andreu A (2001) Assessment of the capacity of Lactobacillus to inhibit the growth of uropathogens and block their adhesion to vaginal epithelial cells. J Infect Dis 183:485–491

    Article  CAS  Google Scholar 

  22. Zarate G, Nader-Marcias ME (2006) Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Lett Appl Microbiol 43:174–180

    Article  CAS  Google Scholar 

  23. Yu H, Boucher JC, Hibler NS, Deretic V (1996) Virulence properties of Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (sigmaE). Infect Immun 64:2774–2781

    CAS  Google Scholar 

  24. Drago L, Gismondo MR, Lombardi A, de Haen C, Gozzini L (1997) Inhibition of in vitro growth of enteropathogens by new Lactobacillus isolates of human intestinal origin. FEMS Microbiol Lett 153:455–463

    Article  CAS  Google Scholar 

  25. Saliba AM, de Assis MC, Nishi R, Raymond B, Marques E, Lopes UG, Touqui L, Plotkowski MC (2006) Implications of oxidative stress in the cytotoxicity of Pseudomonas aeruginosa ExoU. Microbes Infect 8:450–459

    Article  CAS  Google Scholar 

  26. Collado MC, Gueimonde M, Sanz Y, Salminen S (2006) Adhesion properties and competitive pathogen exclusion ability of bifidobacteria with acquired acid resistance. J Food Prot 69:1675–1679

    Google Scholar 

  27. Silvina M, Tomas J, Ocana VS, Wiese B, Nader-Macıas ME (2003) Growth and lactic acid production by vaginal Lactobacillus acidophilus CRL 1259, and inhibition of uropathogenic Escherichia coli. J Med Microbiol 52:1117–1124

    Article  Google Scholar 

  28. Toh QZ, Anzela A, Tang ML, Licciardi PV (2012) Probiotic therapy as a novel approach for allergic disease. Front Pharmacol 3:171–184

    Article  CAS  Google Scholar 

  29. Tuomola E, Crittenden R, Playne M, Isolauri E, Salminen S (2001) Quality assurance criteria for probiotic bacteria. Am J Clin Nutr 73:393S–398S

    CAS  Google Scholar 

  30. Porsch EA, Kehl-Fie TE, Geme JW (2012) Modulation of Kingella kingae Adherence to human epithelial cells by type IV pili, capsule, and a novel trimeric autotransporter. MBio 3:e00372-12

    Article  Google Scholar 

  31. Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Łukaszewicz M (2010) Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One 5:e12050

    Article  Google Scholar 

  32. Zinger-Yosovich KD, Iluz D, Sudakevitz D, Gilboa-Garber N (2010) Blocking of Pseudomonas aeruginosa and Chromobacterium violaceum lectins by diverse mammalian milks. J Dairy Sci 93:473–482

    Article  CAS  Google Scholar 

  33. Rohde M, Chhatwal GS (2013) Adherence and invasion of Streptococci to eukaryotic cells and their role in disease pathogenesis. Curr Top Microbiol Immunol 368:83–110

    Article  Google Scholar 

  34. Molinari G, Chhatwal GS (1998) Invasion and survival of Streptococcus pyogenes in eukaryotic cells correlates with the source of the clinical isolates. J Infect Dis 177:1600–1607

    Article  CAS  Google Scholar 

  35. Courtney HS, Hasty DL, Dale JB (2002) Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann Med 34:77–87

    Article  CAS  Google Scholar 

  36. Alemka A, Whelan S, Gough R, Clyne M, Gallagher ME, Carrington SD, Bourke B (2010) Purified chicken intestinal mucin attenuates Campylobacter jejuni pathogenicity in vitro. J Med Microbiol 59:898–903

    Article  CAS  Google Scholar 

  37. Liévin-Le Moal V, Amsellem R, Servin AL (2011) Impairment of swimming motility by antidiarrheic Lactobacillus acidophilus strain LB retards internalization of Salmonella enterica serovar Typhimurium within human enterocyte-like cells. Antimicrob Agents Chemother 55:4810–4820

    Article  Google Scholar 

  38. Jones BD, Falkow S (1996) Salmonellosis: host immune responses and bacterial virulence determinants. Annu Rev Immunol 14:533–561

    Article  CAS  Google Scholar 

  39. Friedrich N, Hagedorn M, Soldati-Favre D, Soldati T (2012) Prison break: pathogens’ strategies to egress from host cells. Microbiol Mol Biol Rev 76:707–720

    Article  CAS  Google Scholar 

  40. Melvin JA, Murphy CF, Dubois LG, Thompson JW, Moseley MA, McCafferty DG (2011) Staphylococcus aureus sortase A contributes to the Trojan horse mechanism of immune defense evasion with its intrinsic resistance to Cys184 oxidation. Biochem 50:7591–7599

    Article  CAS  Google Scholar 

  41. Hanses F, Kopp A, Bala M, Buechler C, Falk W, Salzberger B, Schäffler A (2011) Intracellular survival of Staphylococcus aureus in adipocyte-like differentiated 3T3-L1 cells is glucose dependent and alters cytokine, chemokine, and adipokine secretion. Endocrin 152:4148–4157

    Article  CAS  Google Scholar 

  42. Hritonenko V, Evans DJ, Fleiszig SM (2012) Translocon-independent intracellular replication by Pseudomonas aeruginosa requires the ADP-ribosylation domain of ExoS. Microbes Infect 14:1366–1373

    Article  CAS  Google Scholar 

  43. Goldová J, Ulrych A, Hercík K, Branny P (2011) A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC Genomics 12:437–457

    Article  Google Scholar 

  44. Mileti E, Matteoli G, Iliev ID, Rescigno M (2009) Comparison of the immunomodulatory properties of three probiotic strains of lactobacilli using complex culture systems: prediction for in Vivo efficacy. PLoS One 4:e7056

    Article  Google Scholar 

  45. Hafez M, Hayes K, Goldrick M, Warhurst G, Grencis R, Roberts IS (2009) The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions between intestinal epithelial cells and chemokine induction. Infect Immun 77:2995–3003

    Article  CAS  Google Scholar 

  46. Kosaka A, Yan H, Ohashi S, Gotoh Y, Sato A, Tsutsui H, Kaisho T, Toda T, Tsuji NM (2012) Lactococcus lactis subsp. cremoris FC triggers IFN-γ production from NK and T cells via IL-12 and IL-18. Int Immunopharmacol 14(4):729–733

    Article  CAS  Google Scholar 

  47. Miller M, Dreisbach A, Otto A, Becher D, Bernhardt J, Hecker M, Peppelenbosch MP, van Dijl JM (2011) Mapping of interactions between human macrophages and Staphylococcus aureus reveals an involvement of MAP kinase signaling in the host defense. J Proteome Res 10:4018–4032

    Article  CAS  Google Scholar 

  48. Hafez M, Hayes K, Goldrick M, Grencis RK, Roberts IS (2010) The K5 capsule of Escherichia coli strain Nissle 1917 is important in stimulating expression of Toll-like receptor 5, CD14, MyD88, and TRIF together with the induction of interleukin-8 expression via the mitogen-activated protein kinase pathway in epithelial cells. Infect Immun 78:2153–2162

    Article  CAS  Google Scholar 

  49. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200

    CAS  Google Scholar 

  50. Ren D, Li C, Qin Y, Yin R, Li X, Tian M, Du S, Guo H, Liu C, Zhu N, Sun D, Li Y, Jin N (2012) Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment. Anaerobe 18:508–515

    Article  CAS  Google Scholar 

  51. Younes JA, van der Mei HC, van den Heuvel E, Busscher HJ, Reid G (2012) Adhesion forces and coaggregation between vaginal staphylococci and lactobacilli. PLoS One 7:e36917

    Article  CAS  Google Scholar 

  52. Reid G, McGroarty JA, Angotti A, Cook RL (1998) Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can J Microbiol 34:344–351

    Article  Google Scholar 

  53. Setia A, Bhandari SK, House JD, Nyachoti CM, Krause DO (2009) Development and in vitro evaluation of an Escherichia coli probiotic able to inhibit the growth of pathogenic Escherichia coli K88. J Anim Sci 87:2005–2012

    Article  CAS  Google Scholar 

  54. Bin L, Kim BE, Brauweiler A, Goleva E, Streib J, Ji Y, Schlievert PM, Leung DY (2012) Staphylococcus aureus α-toxin modulates skin host response to viral infection. J Allergy Clin Immunol 130:683–691

    Article  CAS  Google Scholar 

  55. Niemann S, Ehrhardt C, Medina E, Warnking K, Tuchscherr L, Heitmann V, Ludwig S, Peters G, Löffler B (2012) Combined action of influenza virus and Staphylococcus aureus panton-valentine leukocidin provokes severe lung epithelium damage. J Infect Dis 206:1138–1148

    Article  Google Scholar 

  56. Reszka KJ, Xiong Y, Sallans L, Pasula R, Olakanmi O, Hassett DJ, Britigan BE (2012) Inactivation of the potent Pseudomonas aeruginosa cytotoxin pyocyanin by airway peroxidases and nitrite. Am J Physiol Lung Cell Mol Physiol 302:L1044–L1056

    Article  CAS  Google Scholar 

  57. Machado GB, de Oliveira AV, Saliba AM, de Lima CD, Suassuna JH, Plotkowski MC (2011) Pseudomonas aeruginosa toxin ExoU induces a PAF-dependent impairment of alveolar fibrin turnover secondary to enhanced activation of coagulation and increased expression of plasminogen activator inhibitor-1 in the course of mice pneumosepsis. Respir Res 12:104–113

    Article  CAS  Google Scholar 

  58. Marouni MJ, Sela S (2004) Fate of Streptococcus pyogenes and epithelial cells following internalization. J Med Microbiol 53:1–7

    Article  CAS  Google Scholar 

  59. Evans DJ, Kuo TC, Kwong M, Van R, Fleiszig SM (2002) Mutation of csk, encoding the C-terminal Src kinase, reduces Pseudomonas aeruginosa internalization by mammalian cells and enhances bacterial cytotoxicity. Microb Pathog 33:135–143

    Article  CAS  Google Scholar 

  60. Segawa S, Fujiya M, Konishi H, Ueno N, Kobayashi N, Shigyo T, Kohgo Y (2011) Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin–p38 MAPK pathway. PLoS One 6:e23278

    Article  CAS  Google Scholar 

  61. Segawa S, Wakita Y, Hirata H, Watari J (2008) Oral administration of heat-killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol-containing diet-fed C57BL/6N mice. Int J Food Microbiol 128:371–377

    Article  CAS  Google Scholar 

  62. Okamoto K, Fujiya M, Nata T, Ueno N, Inaba Y, Ishikawa C, Ito T, Moriichi K, Tanabe H, Mizukami Y, Chang EB, Kohgo Y (2012) Competence and sporulation factor derived from Bacillus subtilis improves epithelial cell injury in intestinal inflammation via immunomodulation and cytoprotection. Int J Colorectal Dis 27:1039–1046

    Article  Google Scholar 

  63. Kim CH, Kim HG, Kim JY, Kim NR, Jung BJ, Jeong JH, Chung DK (2012) Probiotic genomic DNA reduces the production of pro-inflammatory cytokine tumor necrosis factor-alpha. FEMS Microbiol Lett 328:13–19

    Article  CAS  Google Scholar 

  64. Nakayama T, Lu H, Nomura N (2009) Inhibitory effects of Bacillus probionts on growth and toxin production of Vibrio harveyi pathogens of shrimp. Lett Appl Microbiol 49:679–684

    Article  CAS  Google Scholar 

  65. Li J, Wang W, Xu SX, Magarvey NA, McCormick JK (2011) Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci 108:3360–3365

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Taif university, KSA, for funding this work under university project No. 1257.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Hafez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafez, M.M., Maghrabi, I.A. & Zaki, N.M. Toward an Alternative Therapeutic Approach for Skin Infections: Antagonistic Activity of Lactobacilli Against Antibiotic-Resistant Staphylococcus aureus and Pseudomonas aeruginosa . Probiotics & Antimicro. Prot. 5, 216–226 (2013). https://doi.org/10.1007/s12602-013-9137-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-013-9137-z

Keywords

Navigation