Skip to main content

Advertisement

Log in

Competence and sporulation factor derived from Bacillus subtilis improves epithelial cell injury in intestinal inflammation via immunomodulation and cytoprotection

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Introduction

Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. These probiotic effects are considered to be displayed through the mediation of effective molecules derived from these bacteria because live bacteria as well as their conditioned media exhibit beneficial effects in many cases. However, many of the probiotic-derived molecules which mediate such benefits have so far been poorly characterized. We previously found that competence and sporulation factor (CSF) activates the Akt and p38 MAPK pathways and protects epithelial cells from oxidant stress in the mammalian intestine. The purpose of this study is to determine the CSF effect on reducing intestinal inflammation.

Methods and results

A protein array demonstrated that CSF induced the anti-inflammatory cytokine, IL-10, and decreased the release of pro-inflammatory mediators, IL-4, IL-6 and CXCL-1, induced by TNF-α in Caco2/bbe cells. CSF also induced the cytoprotective protein Hsp 27 in Caco2/bbe cells. The histological score of intestinal inflammation in 2% dextran sodium sulfate (DSS)-treated mice with the administration of 10 nM CSF was significantly lower than that of control mice. CSF also improved the survival rate of mice treated with a lethal concentration of DSS.

Conclusion

Therefore, CSF is a potentially effective treatment for intestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291(5505):881–884. doi:10.1126/science.291.5505.881

    Article  PubMed  CAS  Google Scholar 

  2. Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159(4):1739–1745

    PubMed  CAS  Google Scholar 

  3. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519. doi:10.1016/S0140-6736(03)12489-0

    Article  PubMed  Google Scholar 

  4. Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, Ouwehand A, Leyer G, Carcano D, Colombel JF, Ardid D, Desreumaux P (2007) Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 13(1):35–37. doi:10.1038/nm1521

    Article  PubMed  CAS  Google Scholar 

  5. Kruis W, Schutz E, Fric P, Fixa B, Judmaier G, Stolte M (1997) Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 11(5):853–858

    Article  PubMed  CAS  Google Scholar 

  6. Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT (1999) Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 354(9179):635–639

    Article  PubMed  CAS  Google Scholar 

  7. Gionchetti P, Rizzello F, Venturi A, Brigidi P, Matteuzzi D, Bazzocchi G, Poggioli G, Miglioli M, Campieri M (2000) Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 119(2):305–309

    Article  PubMed  CAS  Google Scholar 

  8. Kato K, Mizuno S, Umesaki Y, Ishii Y, Sugitani M, Imaoka A, Otsuka M, Hasunuma O, Kurihara R, Iwasaki A, Arakawa Y (2004) Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 20(10):1133–1141. doi:10.1111/j.1365-2036.2004.02268.x

    Article  PubMed  CAS  Google Scholar 

  9. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, De Simone C, Sartor RB (2005) VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 100(7):1539–1546. doi:10.1111/j.1572-0241.2005.41794.x

    Article  PubMed  Google Scholar 

  10. Surawicz CM, Elmer GW, Speelman P, McFarland LV, Chinn J, van Belle G (1989) Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study. Gastroenterology 96(4):981–988

    PubMed  CAS  Google Scholar 

  11. McFarland LV, Surawicz CM, Greenberg RN, Fekety R, Elmer GW, Moyer KA, Melcher SA, Bowen KE, Cox JL, Noorani Z et al (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA: J Am Med Assoc 271(24):1913–1918

    Article  CAS  Google Scholar 

  12. Bin-Nun A, Bromiker R, Wilschanski M, Kaplan M, Rudensky B, Caplan M, Hammerman C (2005) Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J Pediatr 147(2):192–196. doi:10.1016/j.jpeds.2005.03.054

    Article  PubMed  Google Scholar 

  13. Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI, Tsao LY, Chen CH, Su BH (2008) Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics 122(4):693–700. doi:10.1542/peds.2007-3007

    Article  PubMed  Google Scholar 

  14. Wehkamp J, Harder J, Wehkamp K, Wehkamp-von Meissner B, Schlee M, Enders C, Sonnenborn U, Nuding S, Bengmark S, Fellermann K, Schroder JM, Stange EF (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72(10):5750–5758. doi:10.1128/IAI.72.10.5750-5758.2004

    Article  PubMed  CAS  Google Scholar 

  15. Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151(3):528–535. doi:10.1111/j.1365-2249.2007.03587.x

    Article  PubMed  CAS  Google Scholar 

  16. Mondel M, Schroeder BO, Zimmermann K, Huber H, Nuding S, Beisner J, Fellermann K, Stange EF, Wehkamp J (2009) Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunol 2(2):166–172. doi:10.1038/mi.2008.77

    Article  PubMed  CAS  Google Scholar 

  17. Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277(52):50959–50965. doi:10.1074/jbc.M207050200

    Article  PubMed  CAS  Google Scholar 

  18. Tao Y, Drabik KA, Waypa TS, Musch MW, Alverdy JC, Schneewind O, Chang EB, Petrof EO (2006) Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol Cell Physiol 290(4):C1018–C1030. doi:10.1152/ajpcell.00131.2005

    Article  PubMed  CAS  Google Scholar 

  19. Morita H, He F, Fuse T, Ouwehand AC, Hashimoto H, Hosoda M, Mizumachi K, Kurisaki J (2002) Adhesion of lactic acid bacteria to caco-2 cells and their effect on cytokine secretion. Microbiol Immunol 46(4):293–297

    PubMed  CAS  Google Scholar 

  20. Hosoi T, Hirose R, Saegusa S, Ametani A, Kiuchi K, Kaminogawa S (2003) Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto). Int J Food Microbiol 82(3):255–264

    Article  PubMed  CAS  Google Scholar 

  21. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5(1):104–112. doi:10.1038/ni1018

    Article  PubMed  CAS  Google Scholar 

  22. Petrof EO, Kojima K, Ropeleski MJ, Musch MW, Tao Y, De Simone C, Chang EB (2004) Probiotics inhibit nuclear factor-kappaB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology 127(5):1474–1487

    Article  PubMed  CAS  Google Scholar 

  23. Jijon H, Backer J, Diaz H, Yeung H, Thiel D, McKaigney C, De Simone C, Madsen K (2004) DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 126(5):1358–1373

    Article  PubMed  CAS  Google Scholar 

  24. Zhang L, Li N, Caicedo R, Neu J (2005) Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-alpha-induced interleukin-8 production in Caco-2 cells. J Nutr 135(7):1752–1756

    PubMed  CAS  Google Scholar 

  25. Otte JM, Podolsky DK (2004) Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286(4):G613–G626. doi:10.1152/ajpgi.00341.2003

    Article  PubMed  CAS  Google Scholar 

  26. O'Hara AM, O'Regan P, Fanning A, O'Mahony C, Macsharry J, Lyons A, Bienenstock J, O'Mahony L, Shanahan F (2006) Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology 118(2):202–215. doi:10.1111/j.1365-2567.2006.02358.x

    Article  PubMed  Google Scholar 

  27. Broekaert IJ, Nanthakumar NN, Walker WA (2007) Secreted probiotic factors ameliorate enteropathogenic infection in zinc-deficient human Caco-2 and T84 cell lines. Pediatr Res 62(2):139–144. doi:10.1203/PDR.0b013e31809fd85e

    Article  PubMed  Google Scholar 

  28. Lopez M, Li N, Kataria J, Russell M, Neu J (2008) Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells. J Nutr 138(11):2264–2268. doi:10.3945/jn.108.093658

    Article  PubMed  CAS  Google Scholar 

  29. Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Microbiol 125(3):286–292. doi:10.1016/j.ijfoodmicro.2008.04.012

    Article  CAS  Google Scholar 

  30. Zeuthen LH, Fink LN, Frokiaer H (2008) Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology 123(2):197–208. doi:10.1111/j.1365-2567.2007.02687.x

    PubMed  CAS  Google Scholar 

  31. Ueno N, Fujiya M, Segawa S, Nata T, Moriichi K, Tanabe H, Mizukami Y, Kobayashi N, Ito K, Kohgo Y (2011) Heat-killed body of Lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function. Inflamm Bowel Dis 17(11):2235–2250. doi:10.1002/ibd.21597

    Article  PubMed  Google Scholar 

  32. Lievin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser JR, Servin AL (2000) Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47(5):646–652

    Article  PubMed  CAS  Google Scholar 

  33. Fujiya M, Musch MW, Nakagawa Y, Hu S, Alverdy J, Kohgo Y, Schneewind O, Jabri B, Chang EB (2007) The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1(4):299–308. doi:10.1016/j.chom.2007.05.004

    Article  PubMed  CAS  Google Scholar 

  34. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132(2):562–575. doi:10.1053/j.gastro.2006.11.022

    Article  PubMed  CAS  Google Scholar 

  35. Alexopoulos C, Georgoulakis IE, Tzivara A, Kyriakis CS, Govaris A, Kyriakis SC (2004) Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. J Vet Med A Physiol Pathol Clin Med 51(6):306–312. doi:10.1111/j.1439-0442.2004.00637.x

    Article  PubMed  CAS  Google Scholar 

  36. D'Arienzo R, Maurano F, Mazzarella G, Luongo D, Stefanile R, Ricca E, Rossi M (2006) Bacillus subtilis spores reduce susceptibility to Citrobacter rodentium-mediated enteropathy in a mouse model. Res Microbiol 157(9):891–897. doi:10.1016/j.resmic.2006.06.001

    Article  PubMed  Google Scholar 

  37. Solomon JM, Lazazzera BA, Grossman AD (1996) Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 10(16):2014–2024

    Article  PubMed  CAS  Google Scholar 

  38. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256. doi:10.1038/36786

    Article  PubMed  CAS  Google Scholar 

  39. Lazazzera BA, Solomon JM, Grossman AD (1997) An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell 89(6):917–925

    Article  PubMed  CAS  Google Scholar 

  40. Tam NK, Uyen NQ, Hong HA, le Duc H, Hoa TT, Serra CR, Henriques AO, Cutting SM (2006) The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188(7):2692–2700. doi:10.1128/JB.188.7.2692-2700.2006

    Article  PubMed  CAS  Google Scholar 

  41. Musch MW, Kaplan B, Chang EB (2001) Role of increased basal expression of heat shock protein 72 in colonic epithelial c2BBE adenocarcinoma cells. Cell Growth Differ: Mol Biol J Am Assoc Cancer Res 12(8):419–426

    CAS  Google Scholar 

  42. Ropeleski MJ, Tang J, Walsh-Reitz MM, Musch MW, Chang EB (2003) Interleukin-11-induced heat shock protein 25 confers intestinal epithelial-specific cytoprotection from oxidant stress. Gastroenterology 124(5):1358–1368

    Article  PubMed  CAS  Google Scholar 

  43. Ropeleski MJ, Riehm J, Baer KA, Musch MW, Chang EB (2005) Anti-apoptotic effects of L-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock. Gastroenterology 129(1):170–184

    Article  PubMed  CAS  Google Scholar 

  44. Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G, Thompson-Snipes L, Leach MW, Rennick D (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 98(4):1010–1020. doi:10.1172/JCI118861

    Article  PubMed  CAS  Google Scholar 

  45. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274

    Article  PubMed  CAS  Google Scholar 

  46. McFarland LV (2006) Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol 101(4):812–822. doi:10.1111/j.1572-0241.2006.00465.x

    Article  PubMed  Google Scholar 

  47. Rahimi R, Nikfar S, Rahimi F, Elahi B, Derakhshani S, Vafaie M, Abdollahi M (2008) A meta-analysis on the efficacy of probiotics for maintenance of remission and prevention of clinical and endoscopic relapse in Crohn's disease. Dig Dis Sci 53(9):2524–2531. doi:10.1007/s10620-007-0171-0

    Article  PubMed  Google Scholar 

  48. Hu S, Ciancio MJ, Lahav M, Fujiya M, Lichtenstein L, Anant S, Musch MW, Chang EB (2007) Translational inhibition of colonic epithelial heat shock proteins by IFN-gamma and TNF-alpha in intestinal inflammation. Gastroenterology 133(6):1893–1904. doi:10.1053/j.gastro.2007.09.026

    Article  PubMed  CAS  Google Scholar 

  49. Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423. doi:10.1038/nature09674

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by a Grant-in-Aid for Scientific Research no. 20590734 (M.F.) and the Intractable Disease, the Health and Labour Sciences Research Grants from the Ministry of Health, Labor and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikihiro Fujiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, K., Fujiya, M., Nata, T. et al. Competence and sporulation factor derived from Bacillus subtilis improves epithelial cell injury in intestinal inflammation via immunomodulation and cytoprotection. Int J Colorectal Dis 27, 1039–1046 (2012). https://doi.org/10.1007/s00384-012-1416-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-012-1416-8

Keywords

Navigation