Skip to main content
Log in

Extended uterine receptivity for blastocyst implantation and full-term fetal development in mice with vitrified–warmed ovarian tissue autotransplantation

  • Original Article
  • Published:
Reproductive Medicine and Biology

Abstract

Purpose

Our previous study demonstrated that vitrified–warmed ovarian tissue autotransplantation (VOAT) into estrus cycle-ceased ovariectomized mice restored fertility to achieve full-term fetal development for transferred embryos, while less steroidogenesis in the corpus luteum was observed in VOAT mice. It has been reported that the window of uterine receptivity for blastocyst implantation is extended at lower estrogen levels. Therefore, we hypothesized that duration of the window in VOAT mice could be extended.

Methods

Blastocysts were transferred into VOAT mice on day 5 of pseudopregnancy. Immunohistochemical analysis was performed to examine the potential in VOAT ovarian tissues.

Results

The rate of live birth pups from embryos transferred on day 5 of pseudopregnant VOAT mice was not different from that of embryos transferred on day 4 of pseudopregnancy in VOAT mice, while embryo transfer on day 5 into intact mice showed no pregnancy. Immunohistochemical analysis of the corpus luteum of day 8 pseudopregnant VOAT mice with uteri having decidualization induced on day 5 showed less steroidogenesis and blood vessel formation as compared to intact mice.

Conclusions

Uterine receptivity was extended in VOAT mice. Less steroidogenesis and blood vessel formation in the transferred ovarian tissues may be associated with the extended uterine receptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7:535–43.

    Article  PubMed  CAS  Google Scholar 

  2. Andersen CY, Rosendahl M, Byskov AG, Loft A, Ottosen C, Dueholm M, Schmidt KL, Andersen AN, Ernst E. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008;23:2266–72.

    Article  PubMed  Google Scholar 

  3. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. Oncologist. 2007;12:1437–42.

    Article  PubMed  Google Scholar 

  4. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–10.

    Article  PubMed  CAS  Google Scholar 

  5. Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, Schiff E, Dor J. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353:318–21.

    Article  PubMed  CAS  Google Scholar 

  6. Rosendahl M, Loft A, Byskov AG, Ziebe S, Schmidt KT, Andersen AN, Ottosen C, Andersen CY. Biochemical pregnancy after fertilization of an oocyte aspirated from a heterotopic autotransplant of cryopreserved ovarian tissue: case report. Hum Reprod. 2006;21:2006–9.

    Article  PubMed  CAS  Google Scholar 

  7. Anderson RA, Wallace WH, Baird DT. Ovarian cryopreservation for fertility preservation: indications and outcomes. Reproduction. 2008;136:681–9.

    Article  PubMed  CAS  Google Scholar 

  8. Kim SS, Radford J, Harris M, Varley J, Rutherford AJ, Lieberman B, Shalet S, Gosden R. Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum Reprod. 2001;16:2056–60.

    Article  PubMed  CAS  Google Scholar 

  9. Kagawa N, Kuwayama M, Nakata K, Vajta G, Silber S, Manabe N, Kato O. Production of the first offspring from oocytes derived from fresh and cryopreserved pre-antral follicles of adult mice. Reprod Biomed Online. 2007;14:693–9.

    Article  PubMed  Google Scholar 

  10. Wang X, Catt S, Pangestu M, Temple-Smith P. Live offspring from vitrified blastocysts derived from fresh and cryopreserved ovarian tissue grafts of adult mice. Reproduction. 2009;138:527–35.

    Article  PubMed  CAS  Google Scholar 

  11. Mitsui A, Yoshizawa M. Successful pregnancy in ovariectomized mice using a combination of heterotopic autotransplantation of ovarian tissues and embryo transfer. Reprod Med Biol. 2007;6:85–90.

    Article  Google Scholar 

  12. Matsumoto H, Ezoe K, Mitsui A, Fukui E, Ochi M, Yoshizawa M. Vitrified–warmed ovarian tissue autotransplantation into ovariectomized mice restores sufficient ovarian function to support full-term pregnancy. Reprod Med Biol. 2011;10:185–91.

    Article  Google Scholar 

  13. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7:185–99.

    Article  PubMed  Google Scholar 

  14. Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H. Molecular cues to implantation. Endocr Rev. 2004;25:341–73.

    Article  PubMed  CAS  Google Scholar 

  15. Paria BC, Reese J, Das SK, Dey SK. Deciphering the cross-talk of implantation: advances and challenges. Science. 2002;296:2185–8.

    Article  PubMed  CAS  Google Scholar 

  16. Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, Fisher SJ. Trophoblast differentiation during embryo implantation and formation of the maternal–fetal interface. J Clin Invest. 2004;114:744–54.

    PubMed  CAS  Google Scholar 

  17. Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci USA. 1993;90:10159–62.

    Article  PubMed  CAS  Google Scholar 

  18. Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci USA. 2003;100:2963–8.

    Article  PubMed  CAS  Google Scholar 

  19. Yoshizawa M, Nakamoto S, Fukui E, Muramatsu T, Okamoto A. Chromosomal analysis of first-cleavage mouse eggs fertilized in caffeine-containing medium. J Reprod Dev. 1992;38:107–13.

    Article  Google Scholar 

  20. Matsumoto H, Ma W, Smalley W, Trzaskos J, Breyer RM, Dey SK. Diversification of cyclooxygenase-2-derived prostaglandins in ovulation and implantation. Biol Reprod. 2001;64:1557–65.

    Article  PubMed  CAS  Google Scholar 

  21. Matsumoto H, Ma WG, Daikoku T, Zhao X, Paria BC, Das SK, Trzaskos JM, Dey SK. Cyclooxygenase-2 differentially directs uterine angiogenesis during implantation in mice. J Biol Chem. 2002;277:29260–7.

    Article  PubMed  CAS  Google Scholar 

  22. Agarwal P, Peluso JJ, White BA. Steroidogenic factor-1 expression is transiently repressed and c-myc expression and deoxyribonucleic acid synthesis are induced in rat granulosa cells during the periovulatory period. Biol Reprod. 1996;55:1271–5.

    Article  PubMed  CAS  Google Scholar 

  23. Hsieh M, Boerboom D, Shimada M, Lo Y, Parlow AF, Luhmann UF, Berger W, Richards JS. Mice null for Frizzled4 (Fzd4−/−) are infertile and exhibit impaired corpora lutea formation and function. Biol Reprod. 2005;73:1135–46.

    Article  PubMed  CAS  Google Scholar 

  24. Sakurai T, Tamura K, Okamoto S, Hara T, Kogo H. Possible role of cyclooxygenase II in the acquisition of ovarian luteal function in rodents. Biol Reprod. 2003;69:835–42.

    Article  PubMed  CAS  Google Scholar 

  25. Sugino N, Suzuki T, Sakata A, Miwa I, Asada H, Taketani T, Yamagata Y, Tamura H. Angiogenesis in the human corpus luteum: changes in expression of angiopoietins in the corpus luteum throughout the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab. 2005;90:6141–8.

    Article  PubMed  CAS  Google Scholar 

  26. Song H, Lim H, Paria BC, Matsumoto H, Swift LL, Morrow J, Bonventre JV, Dey SK. Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ‘on-time’ embryo implantation that directs subsequent development. Development. 2002;129:2879–89.

    PubMed  CAS  Google Scholar 

  27. Song H, Han K, Lim H. Progesterone supplementation extends uterine receptivity for blastocyst implantation in mice. Reproduction. 2007;133:487–93.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Noriko Numata for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromichi Matsumoto.

About this article

Cite this article

Matsumoto, H., Ezoe, K., Mitsui, A. et al. Extended uterine receptivity for blastocyst implantation and full-term fetal development in mice with vitrified–warmed ovarian tissue autotransplantation. Reprod Med Biol 11, 123–128 (2012). https://doi.org/10.1007/s12522-012-0119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-012-0119-8

Keywords

Navigation