Skip to main content
Log in

Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The morphology and electronic structure of a Li4Ti5O12 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5O12 nanofibers have been rationally designed and synthesized by an electrospinning technique to meet the requirements of one-dimensional (1D) morphology and superior electrical conductivity. Herein, we have found that the 1D Ag-Li4Ti5O12 nanofibers show enhanced specific capacity, rate capability, and cycling stability compared to bare Li4Ti5O12 nanofibers, due to the Ag nanoparticles (<5 nm), which are mainly distributed at interfaces between Li4Ti5O12 primary particles. This structural morphology gives rise to 20% higher rate capability than bare Li4Ti5O12 nanofibers by facilitating the charge transfer kinetics. Our findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anodes for lithium rechargeable batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeong, G.; Kim, Y. U.; Kim, H.; Kim, Y. J.; Sohn, H. J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4, 1986–2002.

    Article  CAS  Google Scholar 

  2. Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818–837.

    Article  CAS  Google Scholar 

  3. Colbow, K. M.; Dahn J. R.; Haering, R. R. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4. J. Power Sources 1989, 26, 397–402.

    Article  CAS  Google Scholar 

  4. Ferg, E.; Gummow, R. J.; de Kock, A.; Thackeray, M. M. Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 1994, 141, L147–L150.

    Article  CAS  Google Scholar 

  5. Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 1995, 142, 1431–1435.

    Article  CAS  Google Scholar 

  6. Kavan, L.; Gratzel, M. Facile synthesis of nanocrystalline Li4Ti5O12(spinel) exhibiting fast Li insertion. Electrochem. Solid-State Lett. 2002, 5, A39–A42.

    Article  CAS  Google Scholar 

  7. Lu, X.; Zhao, L.; He, X.; Xiao, R.; Gu, L.; Hu, Y.-S.; Li, H.; Wang, Z.; Duan, X.; Chen, L. et al. Lithium storage in Li4Ti5O12 spinel: The full static picture from electron microscopy. Adv. Mater. 2012, 24, 3233–3268.

    Article  CAS  Google Scholar 

  8. Pan, H.; Zhao, L.; Hu, Y.-S.; Li, H.; Chen, L. Improved Li-storage performance of Li4Ti5O12 coated with C-N compounds derived from pyrolysis of urea through a low-temperature approach. ChemSusChem 2012, 5, 526–529.

    Article  CAS  Google Scholar 

  9. Pan, H.-L.; Hu, Y.-S.; Li, H.; Chen, L.-Q. Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12. Chin. Phys. B 2011, 20, 118202.

    Article  Google Scholar 

  10. Jansen, A. N.; Kahaian, A. J.; Kepler, K. D.; Nelson, P. A.; Amine, K.; Dees, D. W.; Vissers, D. R.; Thackeray, M. M. Development of a high-power lithium-ion battery. J. Power Sources 1999, 81–82, 902–905.

    Article  Google Scholar 

  11. Ouyang, C. Y.; Zhong, Z. Y.; Lei, M. S. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem. Commun. 2007, 9, 1107–1112.

    Article  CAS  Google Scholar 

  12. Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.

    Article  CAS  Google Scholar 

  13. Han, H.; Song, T.; Bae, J. Y.; Nazar, L. F.; Kim, H.; Paik, U. Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy Environ. Sci. 2011, 4, 4532–4536.

    Article  CAS  Google Scholar 

  14. Park, K. S.; Benayad, A.; Kang, D. J.; Doo, S. G. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J. Am. Chem. Soc. 2008, 130, 14930–14931.

    Article  CAS  Google Scholar 

  15. Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.

    Article  CAS  Google Scholar 

  16. Nugroho, A.; Chang, W.; Kim, S. J.; Chung, K. Y.; Kim, J. Superior high rate performance of core-shell Li4Ti5O12/carbon nanocomposite synthesized by a supercritical alcohol approach. RSC Adv. 2012, 2, 10805–10808.

    Article  CAS  Google Scholar 

  17. Lee, S.; Cho, Y.; Song, H.-K.; Lee, K. T.; Cho, J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Edit. 2012, 51, 8748–8752.

    Article  CAS  Google Scholar 

  18. Cai, R.; Jiang, S. M.; Yu, X.; Zhao, B. T.; Wang, H. T.; Shao, Z. P. A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature. J. Mater. Chem. 2012, 22, 8013–8021.

    Article  CAS  Google Scholar 

  19. Song, H.; Yun, S.-W.; Chun, H.-H.; Kim, M.-G.; Chung, K. Y.; Kim, H. S.; Cho, B.-W.; Kim, Y.-T. Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ. Sci. 2012, 5, 9903–9913.

    Article  CAS  Google Scholar 

  20. Gu, F.; Chen, G.; Wang, Z. Synthesis and electrochemical performances of Li4Ti4.95Zr0.05O12/C as anode material for lithium-ion batteries. J. Solid State Electrochem. 2012, 16, 375–382.

    Article  CAS  Google Scholar 

  21. Nam, S. H.; Shim, H. S.; Kim, Y. S.; Dar, M. A.; Kim, J. G.; Kim, W. B. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Inter. 2010, 2, 2046–2052.

    Article  CAS  Google Scholar 

  22. Du, G.; Sharma, N.; Peterson, V. K.; Kimpton, J. A.; Jia, D.; Guo, Z. Br-doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: Synchrotron X-ray and in situ neutron diffraction studies. Adv. Funct. Mater. 2011, 21, 3990–3997.

    Article  CAS  Google Scholar 

  23. Guo, Y.-G.; Hu, Y.-S.; Sigle, W.; Maier, J. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Adv. Mater. 2007, 19, 2087–2091.

    Article  CAS  Google Scholar 

  24. Kim, J.-G.; Shi, D.; Kong, K.-J.; Heo, Y.-U.; Kim, J. H.; Jo, M. R.; Lee, Y. C.; Kang, Y.-M.; Dou, S. X. Structurally and electronically designed TiO2Nx nanofibers for lithium rechargeable batteries. ACS Appl. Mater. Interfaces 2013, 5, 691–696.

    Article  CAS  Google Scholar 

  25. Shim, H. W.; Lee, D. K.; Cho, I. S.; Hong, K. S.; Kim, D. W. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries. Nanotechnology 2010, 21, 255706.

    Article  Google Scholar 

  26. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimentional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389.

    Article  CAS  Google Scholar 

  27. Lu, X.; Wang, C.; Wei, Y. One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Small 2009, 5, 2349–2370.

    Article  CAS  Google Scholar 

  28. Jo, M. R.; Jung, Y. S.; Kang, Y.-M. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. Nanoscale, 2012, 4, 6870–6875

    Article  CAS  Google Scholar 

  29. Li, D.; Xia, Y. Fabrication of titania nanofibers by electrospinning. Nano Lett. 2003, 3, 555–560.

    Article  CAS  Google Scholar 

  30. Li, D.; Xia, Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 2004, 4, 933–938.

    Article  CAS  Google Scholar 

  31. Yu, Y.; Gu, L.; Zhu, C.; Aken, P. A.; Maier, J. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: Preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J. Am. Chem. Soc. 2009, 131, 15984–15985.

    Article  CAS  Google Scholar 

  32. Cavaliere, S.; Subianto, S.; Savych, I.; Jones, D. J.; Roziere, J. Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 2011, 4, 4761–4785.

    Article  CAS  Google Scholar 

  33. Asokan, K.; Park, J. Y.; Choi, S.; Chang, C.; Kim, S. S. Stabilization of the anatase phase of Ti1−x SnxO2 (x < 0.5) nanofibers. Nano Res. 2010, 3, 256–263.

    Article  CAS  Google Scholar 

  34. Kim, J.; Cho, J. Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode. Electrochen Solid-State Lett. 2007, 10, A81–A84.

    Article  CAS  Google Scholar 

  35. Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J. C.; Olivier-Fourcade, J.; Tirado, J. L.; Corredor, J. I.; Vicente, C. P. Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel. Chem. Mater. 2004, 16, 5721–5725.

    Article  CAS  Google Scholar 

  36. Wan, Z.; Cai, R.; Jiang, S.; Shao, Z. Nitrogen- and TiN-modified Li4Ti5O12: One-step synthesis and electrochemical performance optimization. J. Mater. Chem. 2012, 22, 17773–17781.

    Article  CAS  Google Scholar 

  37. Huang, S.; Wen, Z.; Zhu, X.; Gu, Z. Preparation and electrochemical performance of Ag doped Li4Ti5O12. Electrochem. Commun. 2004, 6, 1093–1097.

    Article  CAS  Google Scholar 

  38. Liu, Z.; Zhang, N.; Wang, Z.; Sun, K. Highly dispersed Ag nanoparticles (<10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. J. Power Sources 2012, 205, 479–482.

    Article  CAS  Google Scholar 

  39. Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 2004, 3, 147–152.

    Article  CAS  Google Scholar 

  40. Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

    Article  Google Scholar 

  41. Jo, M. R.; Nam, K. M.; Lee, Y.; Song, K.; Park, J. T.; Kang, Y.-M. Phosphidation of Li4Ti5O12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries. Chem. Commun. 2011, 47, 11474–11476.

    Article  CAS  Google Scholar 

  42. Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z. X.; Chen, L. Q. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388.

    Article  CAS  Google Scholar 

  43. Ma, Y.; Ji, G.; Ding, B.; Lee, J. Y. Facile solvothermal synthesis of anatase TiO2 microspheres with adjustable mesoporosity for the reversible storage of lithium ions. J. Mater. Chem. 2012, 22, 24380–24385.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Goojin Jeong or Jung Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JG., Shi, D., Park, MS. et al. Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res. 6, 365–372 (2013). https://doi.org/10.1007/s12274-013-0313-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0313-y

Keywords

Navigation