Skip to main content
Log in

Electrospinning preparation of one-dimensional Co2+-doped Li4Ti5O12 nanofibers for high-performance lithium ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

One-dimensional Co2+-doped Li4Ti5O12 nanofibers with a diameter of approximately 500 nm have been synthesized via a one-step controllable electrospinning method. The Co2+-doped Li4Ti5O12 nanofibers were systematically characterized by XRD, ICP, TEM, SEM, BET, EDS mapping, and XPS. Based on the cubic spinel structure and one-dimensional effect of Li4Ti5O12, Co2+-doped Li4Ti5O12 nanofibers exhibit the enlarged lattice volume, reduced particle size and enhanced electrical conductivity. More importantly, Co2+-doped Li4Ti5O12 nanofibers as a lithium ion battery anode electrode performs superior electrochemical performance than undoped Li4Ti5O12 electrode in terms of electrochemical measurements. Particularly, the reversible capacity of Co2+-doped Li4Ti5O12 electrode reaches up to 140.1 mAh g−1 and still maintains 136.5 mAh g−1 after 200 cycles at a current rate of 5 C. Therefore, one-dimensional Co2+-doped Li4Ti5O12 nanofiber electrodes, showing high reversible capacity and remarkable recycling property, could be a potential candidate as an anode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295. https://doi.org/10.1039/c1ee01388b

    Article  CAS  Google Scholar 

  2. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448. https://doi.org/10.1002/anie.201410376

    Article  CAS  Google Scholar 

  3. Jeong G, Kim YU, Kim H, Kim YJ, Sohn HJ (2011) Prospective materials and applications for Li secondary batteries. Energy Environ Sci 4(6):1986–2002. https://doi.org/10.1039/c0ee00831a

    Article  CAS  Google Scholar 

  4. He YB, Liu M, Huang ZD, Zhang B, Yu Y, Li B, Kang F, Kim JK (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276. https://doi.org/10.1016/j.jpowsour.2013.03.141

    Article  CAS  Google Scholar 

  5. Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu YS, Li H, Armand M, Ikuhara Y, Chen L, Huang X (2013) Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun 4:1–10

    Google Scholar 

  6. Shen LF, Zhang XG, Uchaker E, Yuan CZ, Cao GZ (2012) Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv Energy Mater 2(6):691–698. https://doi.org/10.1002/aenm.201100720

    Article  CAS  Google Scholar 

  7. Zhang Q, Lu HS, Zhong H, Yan XD, Ouyang C, Zhang L (2015) W6+ & Br codoped Li4Ti5O12 anode with super rate performance for Li-ion batteries. J Mater Chem A 3(26):13706–13716. https://doi.org/10.1039/C5TA02784E

    Article  CAS  Google Scholar 

  8. Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5(5):6652–6667. https://doi.org/10.1039/c2ee03410g

    Article  CAS  Google Scholar 

  9. Zhang YL, Lin ZJ, Hu XB, Cao P, Wang YQ (2016) One-step solid-state synthesis of Li4Ti5O12/C with low in situ carbon content and high rate cycling performance. J Solid State Electrochem 20(1):215–223. https://doi.org/10.1007/s10008-015-3019-0

    Article  CAS  Google Scholar 

  10. Kim J, Kim JY, Pham-Cong D, Jeong SY, Chang J, Choi JH, Braun PV, Cho CR (2016) Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries. Electrochim Acta 199:35–44. https://doi.org/10.1016/j.electacta.2016.03.137

    Article  CAS  Google Scholar 

  11. Zhao Z, Xu YL, Ji MD, Zhang H (2013) Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 109:645–650. https://doi.org/10.1016/j.electacta.2013.07.164

    Article  CAS  Google Scholar 

  12. Zou HL, Liang X, Feng XY, Xiang HF (2016) Chromium-modified Li4Ti5O12 with a synergistic effect of bulk doping, surface coating, and size reducing. ACS Appl Mater Interfaces 8(33):21407–21416. https://doi.org/10.1021/acsami.6b07742

    Article  CAS  PubMed  Google Scholar 

  13. Jung JW, Lee CL, Yu S, Kim ID (2016) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 4(3):703–750. https://doi.org/10.1039/C5TA06844D

    Article  CAS  Google Scholar 

  14. Hwang SM, Lim YG, Kim JG, Heo YU, Lim JH, Yamauchi Y, Park MS, Kim YJ, Dou SX, Kim JH (2014) A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy 10:53–62. https://doi.org/10.1016/j.nanoen.2014.08.020

    Article  CAS  Google Scholar 

  15. Kim KJ, Lee SW, Yim T, Kim JG, Choi JW, Kim JH, Park MS, Kim YJ (2014) A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries. Sci Rep 4:6906–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeong G, Kim JG, Park MS, Soo MH, Hwang SM, Kim YU, Kim YJ, Kim JH, Dou SX (2014) Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 8(3):2977–2985. https://doi.org/10.1021/nn500278q

    Article  CAS  PubMed  Google Scholar 

  17. Li D, Lu QF, Guo EY, Wei MZ, Xiu ZL, Ji XY (2017) Graphene membrane encapsulated Co3O4 nanotubes with superior capacity and stability as anode materials for lithium ion batteries. J Sol-Gel Sci Technol 82(1):75–84. https://doi.org/10.1007/s10971-016-4274-y

    Article  CAS  Google Scholar 

  18. Rui XH, Tang YX, Malyid OI, Gusake A, Zhang YY, Niu ZQ, Tan HT, Persson C, Chen XD, Chen Z, Yan QY (2016) Ambient dissolution-recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications. Nano Energy 22:583–593. https://doi.org/10.1016/j.nanoen.2016.03.001

    Article  CAS  Google Scholar 

  19. Zhang YY, Zhang CM, Lin Y, Xiong DB, Wang D, Wu XY, He DN (2014) Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery. J Power Sources 250:50–57. https://doi.org/10.1016/j.jpowsour.2013.10.137

    Article  CAS  Google Scholar 

  20. Cai YJ, Huang YD, Jia W, Zhang Y, Wang XC, Guo Y, Jia DZ, Pang WK, Guo ZP, Wang LS (2016) Two-dimensional dysprosium-modified bamboo-slip-like lithium titanate with high-rate capability and long cycle life for lithium-ion batteries. J Mater Chem A 4(45):17782–17790. https://doi.org/10.1039/C6TA06956H

    Article  CAS  Google Scholar 

  21. Li ZY, Li JL, Zhao YG, Yang K, Gao F, Li X (2016) Structure and electrochemical properties of Sm-doped Li4Ti5O12 as anode material for lithium-ion batteries. RSC Adv 19:15492–15500

    Article  CAS  Google Scholar 

  22. Guo QJ, Wang Q, Chen G, Li B (2016) Multigrain electrospun nickel doped lithium titanate nanofibers with high power lithium ion storage. J Mater Chem A 72:11–23

    CAS  Google Scholar 

  23. Kim JG, Park MS, Hwang SM, Heo YU, Liao T, Sun ZQ, Park JH, Kim KJ, Jeong G, Kim YJ, Kim JH, Dou SX (2014) Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open Li+ diffusion paths through structural imperfection. ChemSusChem 7(5):1451–1457. https://doi.org/10.1002/cssc.201301393

    Article  CAS  PubMed  Google Scholar 

  24. Ge YQ, Jiang H, Fu K, Zhang CH, Zhu JD, Chen C, Lu Y, Qiu YP, Zhang XW (2014) Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. J Power Sources 272:860–865. https://doi.org/10.1016/j.jpowsour.2014.08.131

    Article  CAS  Google Scholar 

  25. Kotnana G, Jammalamadaka SN (2015) General structure analysis system (GSAS). J Appl Phys 117:562

    Google Scholar 

  26. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. Appl Crystallogr 34(2):210–213. https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  27. Liu XN, Lu QF, Liu JH (2016) Electrospinning preparation of one-dimensional ZnO/Bi2WO6 heterostructured sub-microbelts with excellent photocatalytic performance. J Alloy Compd 662:598–606. https://doi.org/10.1016/j.jallcom.2015.12.050

    Article  CAS  Google Scholar 

  28. Song H, Yun SW, Chun HH, Kim MG, Chung KY, Kim HS, Cho BW, Kim YT (2012) Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ Sci 5(12):9903–9913. https://doi.org/10.1039/c2ee22734g

    Article  CAS  Google Scholar 

  29. Yeo Y, Jung JW, Park K, Kim ID (2015) Graphene-wrapped anatase TiO2 nanofibers as high-rate and long-cycle-life anode material for sodium ion batteries. Sci Rep 5(1):13862–13869. https://doi.org/10.1038/srep13862

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen CC, Huang YN, Zhang H, Wang XF, Wang YJ, Jiao LF, Yuan HT (2016) Controllable synthesis of Cu-doped CoO hierarchical structure for high performance lithium-ion battery. J Power Sources 314:66–75. https://doi.org/10.1016/j.jpowsour.2016.02.085

    Article  CAS  Google Scholar 

  31. Xiao JW, Chen C, Xi JB, Xu YY, Xiao F, Wang S, Yang SH (2015) Core-shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction. Nano 7:7056–7064

    CAS  Google Scholar 

  32. Cui K, Hu SC, Li YK (2016) Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for rechargeable lithium-ion batteries. J Power Sources 325:465–473. https://doi.org/10.1016/j.jpowsour.2016.06.058

    Article  CAS  Google Scholar 

  33. Wu N, Yang ZZ, Yao HR, Yin YX, Gu L, Guo YG (2015) Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angew Chem Int Ed 54(19):5757–5761. https://doi.org/10.1002/anie.201501005

    Article  CAS  Google Scholar 

  34. Wang L, Xiao QZ, Wu LJ, Lei GT, Li ZH (2013) Spinel LiCrTiO4 fibers as an advanced anode material in high performance lithium ion batteries. Solid State Ionics 236:43–47. https://doi.org/10.1016/j.ssi.2013.01.018

    Article  CAS  Google Scholar 

  35. Zhou XY, Tang JJ, Yang J, Xie J, Huang B (2013) Seaweed-like porous carbon from the decomposition of polypyrrole nanowires for application in lithium ion batteries. J Mater Chem A 1(16):5037–5044. https://doi.org/10.1039/c3ta10557a

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Shandong Provincial Natural Science Foundation (Grant No. ZR2016BM22) and Science and Technology Program of Shandong Province (Grant No. 2014GGX102039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 1035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Li, D., Lu, Q. et al. Electrospinning preparation of one-dimensional Co2+-doped Li4Ti5O12 nanofibers for high-performance lithium ion battery. Ionics 24, 1887–1894 (2018). https://doi.org/10.1007/s11581-018-2453-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2453-2

Keywords

Navigation