Skip to main content
Log in

Electrospun Li4Ti5O12/Li2TiO3 composite nanofibers for enhanced high-rate lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g−1 at 0.1 C, rate capability of 151 mAh g−1 after being cycled at 20 C, and cycling stability of 122.93 mAh g−1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 45:652

    Article  Google Scholar 

  2. Menachem C, Peled E, Burstein L, Rosenberg Y (1997) Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. J Power Sources 68:277

    Article  CAS  Google Scholar 

  3. Zhang S, Xu K, Jow T (2006) Study of the charging process of a LiCoO2-based Li-ion battery. J Power Sources 160:1349

    Article  CAS  Google Scholar 

  4. Yang S, Feng X, Müllen K (2011) Graphene-based titania nanosheets with high surface area for fast lithium storage. Adv Mater 23:3575

    Article  CAS  Google Scholar 

  5. Shi Y, Wen L, Li F, Cheng HM (2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources 196:8610

    Article  CAS  Google Scholar 

  6. Xu H, Hu X, Sun Y, Luo W, Chen C, Liu Y, Huang Y (2014) Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171

    Article  CAS  Google Scholar 

  7. Liu J, Song K, van Aken PA, Maier J, Yu Y (2014) Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible li-ion batteries. Nano Lett 14:2597

    Article  CAS  Google Scholar 

  8. Yi TF, Fang ZK, Xie Y, Zhu YR, Yang SY (2014) Rapid charge–discharge property of Li4Ti5O12–TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries. ACS Appl Mater Interfaces 6:2933

    Google Scholar 

  9. Gao Y, Wang Z, Chen L (2014) Stability of spinel Li4Ti5O12 in air. J Power Sources 245:684

    Article  CAS  Google Scholar 

  10. Pang WK, Peterson VK, Sharma N, Shiu JJ, Wu SH (2014) Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction. Chem Mater 26:2318–2319

    Article  CAS  Google Scholar 

  11. Kim JG, Park MS, Hwang SM, Heo YU, Liao T, Sun Z, Park JH, Kim KJ, Jeong G, Kim YJ (2014) Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open li+ diffusion paths through structural imperfection. ChemSusChem 7:1451

    Article  CAS  Google Scholar 

  12. Kim JG, Shi V, Park MS, Jeong G, Heo YU, Seo M, Kim YJ, Kim JH, Dou SX (2013) Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res 6:365–372

    Article  CAS  Google Scholar 

  13. Krajewski M, Michalska M, Hamankiewicz B, Ziolkowska D, Korona KP, Jasinski JB, Kaminska M, Lipinska L, Czerwinski A (2014) Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries. J Power Sources 245:764–771

    Article  CAS  Google Scholar 

  14. Marinaro M, Nobili F, Tossici R, Marassi R (2013) Microwave-assisted synthesis of carbon (Super-P) supported copper nanoparticles as conductive agent for Li4Ti5O12 anodes for Lithium-ion batteries. Electrochim Acta 89:555–560

    Article  CAS  Google Scholar 

  15. Li CC, Li QH, Chen LB, Wang TH (2012) A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12 spheres for high-rate lithium-ion batteries. ACS Appl Mater 4:1233–1238

    Article  CAS  Google Scholar 

  16. Zhang H, Chen Y, Li J, He C, Chen Y (2014) Li4Ti5O12/CNTs composite anode material for large capacity and high-rate lithium ion batteries. Int J Hydrog Energy 39:16096–16102

    Article  CAS  Google Scholar 

  17. Xu H, Hu X, Luo W, Sun Y, Yang Z, Hu C, Huang Y (2014) Electrospun conformal Li4Ti5O12/C fibers for high-rate lithium-ion batteries. ChemElectroChem 1:611–616

    Article  Google Scholar 

  18. Kong RDZ, Luo WN, Yang YS, Cheng YP, Chuanwei (2014) Scalable synthesis of graphene-wrapped Li4Ti5O12 dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long-cycle life. J Mater Chem A 2:20221–20230

    Article  CAS  Google Scholar 

  19. Park H, Song T, Han H, Paik U (2013) Electrospun Li4Ti5O12 nanofibers sheathed with conductive TiN/TiOxNy layer as an anode material for high power Li-ion batteries. J Power Sources 244:726–730

    Article  CAS  Google Scholar 

  20. Wang W, Jiang B, Xiong W, Wang Z, Jiao S (2013) A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries. Electrochim Acta 114:198–204

    Article  CAS  Google Scholar 

  21. Zhang Z, Cao L, Huang J, Zhou S, Huang Y, Cai Y (2013) Hydrothermal synthesis of Zn-doped Li4Ti5O12 with improved high rate properties for lithium ion batteries. Ceram Int 39:6139–6143

    Article  CAS  Google Scholar 

  22. Wang W, Wang H, Wang S, Hu Y, Tian Q, Jiao S (2013) Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries. J Power Sources 228:244–249

    Article  CAS  Google Scholar 

  23. Yang CC, Hu HC, Lin SJ, Chien WC (2014) Electrochemical performance of V-doped spinel Li4Ti5O12/C composite anode in Li-half and Li 4Ti 5O12/LiFePO4-full cell. J Power Sources 258:424–433

    Article  CAS  Google Scholar 

  24. Zhao Z, Xu Y, Ji M, Zhang H (2013) Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 109:645–650

    Article  CAS  Google Scholar 

  25. Wang J, Yang Z, Li W, Zhong X, Gu L, Yu Y (2014) Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries. J Power Sources 266:323–331

    Article  CAS  Google Scholar 

  26. Lu J, Peng Q, Wang W, Nan C, Li L, Li Y (2013) Nanoscale coating of LiMO2 (M= Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: toward better rate capabilities for li-ion batteries. J Am Chem Soc 135:1649–1652

    Article  CAS  Google Scholar 

  27. Yang X, Yu R, Ge L, Wang D, Zhao Q, Wang X, Bai Y, Yuan H, Shu H (2014) Facile synthesis and performances of nanosized Li2TiO3-based shell encapsulated LiMn1/3Ni1/3Co1/3O2 microspheres. J Mater Chem A 2:8362–8368

    Article  CAS  Google Scholar 

  28. Wang Y, Zhou A, Dai X, Feng L, Li J, Li J (2014) Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries. J Power Sources 266:114–120

    Article  CAS  Google Scholar 

  29. Wu X, Wen Z, Wang X, Xu X, Lin J, Song S (2010) Effect of ta-doping on the ionic conductivity of lithium titanate. Fusion Eng Des 85:1442–1445

    Article  CAS  Google Scholar 

  30. Wu X, Wen Z, Xu X, Han J (2008) Synthesis and ionic conductivity of Mg-doped Li4Ti5O12. Solid State Ionics 179:1779–1782

    Article  CAS  Google Scholar 

  31. Ko YW, Teh PF, Pramana SS, Wong CL, Tanto S, Li L, Madhavi S (2015) Electrospun single-phase Na1.2V3O8 materials with tunable morphologies as cathodes for rechargeable lithium- ion batteries. ChemElectroChem 2:837–846

    Article  CAS  Google Scholar 

  32. Li ZT, Liu GX, Guo M, Ding LX, Wang SQ, Wang HH (2015) Electrospun porous vanadium pentoxide nanotubes as a high-performance cathode material for lithium-ion batteries. Electrochim Acta 173:131–138

    Article  CAS  Google Scholar 

  33. Wee G, Soh HZ, Cheah YL, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20:6720–6725

    Article  CAS  Google Scholar 

  34. Teh PF, Sharma Y, Pramana SS, Srinivasan M (2011) Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4nanofibers for lithium ion batteries. J Mater Chem 21:14999–15008

    Article  CAS  Google Scholar 

  35. Teh PF, Sharma Y, Ko YW, Pramana SS, Srinivasan M (2013) Tuning the morphology of ZnMn2O4 lithium ion battery anodes by electrospinning and its effect on electrochemical performance. RSC Adv 3:2812–2821

    Article  CAS  Google Scholar 

  36. Kalluri S, Seng KH, Guo Z, Liu HK, Dou SX (2013) Electrospun lithium metal oxide cathode materials for lithium-ion batteries. RSC Adv 3:25576–25601

    Article  CAS  Google Scholar 

  37. Aravindan V, Sundaramurthy J, Kumar PS, Lee Y-S, Ramakrishna S, Madhavi S (2015) Electrospun nanofibers: a prospective electro-adtive material for constructing high performance li-ion batteries. Chem Commun 51:2225–2234

    Article  CAS  Google Scholar 

  38. Tabuchi M, Nakashima A, Shigemura H, Ado K, Kobayashi H, Sakaebe H, Tatsumi K, Kageyama H, Nakamura T, Kanno R (2003) Fine Li(4-x)/3Ti(2-2x)/3FexO2 (0.18 [less-than-or-equal] x [less-than-or-equal] 0.67) powder with cubic rock-salt structure as a positive electrode material for rechargeable lithium batteries. J Mater Chem 13:1747–1757

    Article  CAS  Google Scholar 

  39. Morales J, Santos-Peña J, Trócoli R, Franger S (2008) Electrochemical activity of rock-salt-structured LiFeO2/Li4/3Ti2/3O2 nanocomposites in lithium cells. J Nanopart Res 10:217–226

    Article  CAS  Google Scholar 

  40. Kim JS, Johnson CS, Thackeray MM (2002) Layered xLiMO2·(1−x)Li2MO3 electrodes for lithium batteries: a study of 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3. Electrochem Commun 4:205–209

    Article  CAS  Google Scholar 

  41. Zhang L, Wang X, Noguchi H, Yoshio M, Takada K, Sasaki T (2004) Electrochemical and ex situ XRD investigations on (1−x)LiNiO2·xLi2TiO3 (0.05≤x≤0.5). Electrochim Acta 49:3305–3311

    Article  CAS  Google Scholar 

  42. Wang Y, Rong H, Li B, Xing L, Li X, Li W (2014) Microemulsion-assisted synthesis of ultrafine Li4Ti5O12/C nanocomposite with oleic acid as carbon precursor and particle size controller. J Power Sources 246:213–218

    Article  CAS  Google Scholar 

  43. Huang Z, Wang D, Lin Y, Wu X, Yan P, Zhang C, He D (2014) Enhancing the high-rate performance of Li4Ti5O12 anode material for lithium-ion battery by a wet ball milling assisted solid-state reaction and ultra-high speed nano-pulverization. J Power Sources 266:60–65

    Article  CAS  Google Scholar 

  44. Li X, Lai C, Xiao CW, Gao XP (2011) Enhanced high rate capability of dual-phase Li4Ti5O12–TiO2 induced by pseudocapacitive effect. Electrochim Acta 56:9152–9158

    Article  CAS  Google Scholar 

  45. Haetge J, Hartmann P, Brezesinski K, Janek J, Brezesinski T (2011) Ordered large-pore mesoporous Li4Ti5O12 spinel thin film electrodes with nanocrystalline framework for high rate rechargeable lithium batteries: relationships among charge storage. Chem Mater 23:4384–4393

    Article  CAS  Google Scholar 

  46. Zhu K, Wang Q, Kim JH, Pesaran AA, Frank AJ (2012) Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J Phys Chem C 116:11895–11899

    Article  CAS  Google Scholar 

  47. Vijayakumar M, Kerisit S, Yang Z, Graff GL, Liu J, Sears JA, Burton SD, Rosso KM, Hu J (2009) Combined 6,7Li NMR and molecular dynamics study of li diffusion in Li2TiO3. J Phys Chem C 113:20108–20116

    Article  CAS  Google Scholar 

  48. Dorrian JF, Newnham RE (1969) Refinement of the structure of Li2TiO3. Mater Res Bull 4:179–183

    Article  CAS  Google Scholar 

  49. Kannan A, Rabenberg L, Manthiram A (2003) High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries. Electrochem Solid-State Lett 6:A16–A18

    Article  CAS  Google Scholar 

  50. Zhang L, Noguchi H (2002) Novel layered Li–Cr–Ti–O cathode materials for lithium rechargeable batteries. Electrochem Commun 4:560–564

    Article  CAS  Google Scholar 

  51. Du X, He W, Zhang X, Yue Y, Liu H, Zhang X, Min D, Ge X, Du Y (2012) Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres. J Mater Chem 22:5960–5969

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51573023, 50972020, 21601018), Natural Science Foundation of Jilin Province of China (20170101101JC), and Youth Foundation of Changchun University of Science and Technology (No. XQNJJ-2016-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangting Dong or Wensheng Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Guo, J., Ma, Q. et al. Electrospun Li4Ti5O12/Li2TiO3 composite nanofibers for enhanced high-rate lithium ion batteries. J Solid State Electrochem 21, 2779–2790 (2017). https://doi.org/10.1007/s10008-017-3596-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3596-1

Keywords

Navigation