Skip to main content

Advertisement

Log in

Strategies for Tissue Engineering Cardiac Constructs to Affect Functional Repair Following Myocardial Infarction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Tissue-engineered cardiac constructs are a high potential therapy for treating myocardial infarction. These therapies have the ability to regenerate or recreate functional myocardium following the infarction, restoring some of the lost function of the heart and thereby preventing congestive heart failure. Three key factors to consider when developing engineered myocardial tissue include the cell source, the choice of scaffold, and the use of biomimetic culture conditions. This review details the various biomaterials and scaffold types that have been used to generate engineered myocardial tissues as well as a number of different methods used for the fabrication and culture of these constructs. Specific bioreactor design considerations for creating myocardial tissue equivalents in vitro, such as oxygen and nutrient delivery as well as physical stimulation, are also discussed. Lastly, a brief overview of some of the in vivo studies that have been conducted to date and their assessment of the functional benefit in repairing the injured heart with engineered myocardial tissue is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MI:

Myocardial infarction

ECM:

Extracellular matrix

FDA:

US Food and Drug Administration

SIS:

Small intestinal submucosa

UBM:

Urinary bladder matrix

GAGs:

Glycosaminoglycans

PLGA:

Poly(lactic-co-glycolic acid)

PNIPAAm:

Poly(N-isopropylacrylamide)

PTMCLA:

Poly(trimethylene carbonate-co-lactide)

VEGF:

Vascular endothelial growth factor

PEG:

Polyethylene glycol

FAK:

Focal adhesion Kinase

RhoA:

Ras homolog gene family, member A

AVL:

Arteriovenous blood vessel loop

FS:

Fractional shortening

LVEF:

Left ventricular ejection fraction

EHTs:

Engineered heart tissue

LVEDD:

Left ventricular end-diastolic dimension

LVEDV:

Left ventricular end-diastolic volume

bFGF:

Basic fibroblast growth factor

CPCs:

Cardiac progenitor cells

IGF-1:

Insulin-like growth factor 1

References

  1. Minino, A. M., Xu, J., & Kochanek, K. D. (2008). Deaths: Preliminary data for 2008. National Vital Statistics Reports, vol. 59, p. 31.

  2. World Health Organization (2008). The top ten causes of death, 2008.

  3. Beltrami, A. P., Urbanek, K., Kajstrua, J., Yan, S.-M., Finato, N., Bussani, R., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. The New England Journal of Medicine, 344(23), 1750–1757.

    Article  PubMed  CAS  Google Scholar 

  4. Pfeffer, M. A., & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 81(4), 1161–1172.

    Article  PubMed  CAS  Google Scholar 

  5. Gaudron, P., Eilles, C., Kugler, I., & Ertl, G. (1993). Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation, 87(3), 755–763.

    PubMed  CAS  Google Scholar 

  6. Segers, V. F. M., & Lee, R. T. (2010). Protein therapeutics for cardiac regeneration after myocardial infarction. Journal of Cardiovascular Translational Research, 3(5), 469–477.

    Article  PubMed  Google Scholar 

  7. Boyle, A. (2009). Current status of cardiac transplantation and mechanical circulatory support. Current Heart Failure Reports, 6(1), 28–33.

    Article  PubMed  Google Scholar 

  8. Jeevanandam, V., Furukawa, S., Prendergast, T. W., Todd, B. A., Eisen, H. J., & McClurken, J. B. (1996). Standard criteria for an acceptable donor heart are restricting heart transplantation. The Annals of Thoracic Surgery, 62(5), 1268–1275.

    Article  PubMed  CAS  Google Scholar 

  9. Lindenfeld, J., Miller, G. G., Shakar, S. F., Zolty, R., Lowes, B. D., Wolfel, E. E., et al. (2004). Drug therapy in the heart transplant recipient: Part I: Cardiac rejection and immunosuppressive drugs. Circulation, 110(24), 3734–3740.

    Article  PubMed  Google Scholar 

  10. Laflamme, M. A., Zbinden, S., Epstein, S. E., & Murry, C. E. (2007). Cell-based therapy for myocardial ischemia and infarction: Pathophysiological mechanisms. Annual Review of Pathology, 2, 307–339.

    Article  PubMed  CAS  Google Scholar 

  11. Beitnes, J., Hopp, E., Lunde, K., Solheim, S., Arnesen, H., Brinchmann, J., et al. (2009). Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: The ASTAMI randomised, controlled study. Heart, 95(24), 1983–1989.

    Article  PubMed  CAS  Google Scholar 

  12. Schächinger, V., Assmus, B., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., et al. (2009). Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: Insights from the Reinfusion of Enriched Progenitor Cells and Infarct Remodelling in Acute Myocardial Infarction (REPAIR-AMI) trial. European Journal of Heart Failure, 11(10), 973–979.

    Article  PubMed  Google Scholar 

  13. D’Alessandro, D. A., & Michler, R. E. (2010). Current and future status of stem cell therapy in heart failure. Curr Treat Options Cardiovasc Med, 12(6), 614–627.

    Article  PubMed  Google Scholar 

  14. Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months’ follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-elevation Infarct Regeneration) trial. Circulation, 113(10), 1287–1294.

    Article  PubMed  Google Scholar 

  15. Terrovitis, J. V., Smith, R. R., & Marbán, E. (2010). Assessment and optimization of cell engraftment after transplantation into the heart. Circulation Research, 106(3), 479–494.

    Article  PubMed  CAS  Google Scholar 

  16. Hattori, F., & Fukuda, K. (2010). Strategies for ensuring that regenerative cardiomyocytes function properly and in cooperation with the host myocardium. Experimental & Molecular Medicine, 42(3), 155.

    Article  CAS  Google Scholar 

  17. Choi, Y. S., Dusting, G. J., Stubbs, S., Arunothayaraj, S., Han, X. L., Collas, P., et al. (2010). Differentiation of human adipose-derived stem cells into beating cardiomyocytes. Journal of Cellular and Molecular Medicine, 14(4), 878–889.

    Article  PubMed  CAS  Google Scholar 

  18. Coppen, S. R., Fukushima, S., Shintani, Y., Takahashi, K., Varela-Carver, A., Salem, H., et al. (2008). A factor underlying late-phase arrhythmogenicity after cell therapy to the heart: Global downregulation of connexin43 in the host myocardium after skeletal myoblast transplantation. Circulation, 118(14 Suppl), S138–S144.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, J., Ding, L., Zhao, Y., Sun, W., Chen, B., Lin, H., et al. (2009). Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation, 119(13), 1776–1784.

    Article  PubMed  CAS  Google Scholar 

  20. Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–409.

    Article  PubMed  CAS  Google Scholar 

  21. Padin-Iruegas, M. E., Misao, Y., Davis, M. E., Segers, V. F. M., Esposito, G., Tokunou, T., et al. (2009). Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 120(10), 876–887.

    Article  PubMed  CAS  Google Scholar 

  22. Kreutziger, K. L., & Murry, C. E. (2011). Engineered human cardiac tissue. Pediatric Cardiology, 32(3), 334–341.

    Article  PubMed  Google Scholar 

  23. Martinez, E. C., & Kofidis, T. (2009). Myocardial tissue engineering: The quest for the ideal myocardial substitute. Expert Review of Cardiovascular Therapy, 7(8), 921–928.

    Article  PubMed  CAS  Google Scholar 

  24. St. John Sutton, M. G., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 101, 2981–2988.

    Google Scholar 

  25. Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117(11), 1388–1396.

    Article  PubMed  CAS  Google Scholar 

  26. O’Blenes, S. B., Li, A. W., Chen, R., Arora, R. C., & Horackova, M. (2010). Engraftment is optimal when myoblasts are transplanted early: The role of hepatocyte growth factor. The Annals of Thoracic Surgery, 89(3), 829–835.

    Article  PubMed  Google Scholar 

  27. Hu, X., Wang, J., Chen, J., Luo, R., He, A., Xie, X., et al. (2007). Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. European Journal of Cardio-Thoracic Surgery, 31(3), 438–443.

    Article  PubMed  Google Scholar 

  28. Sakamoto, T., Kojima, S., Ogawa, H., Shimomura, H., Kimura, K., Ogata, Y., et al. (2006). Effects of early statin treatment on symptomatic heart failure and ischemic events after acute myocardial infarction in Japanese. The American Journal of Cardiology, 97(8), 1165–1171.

    Article  PubMed  CAS  Google Scholar 

  29. Martin, I., Wendt, D., & Heberer, M. (2004). The role of bioreactors in tissue engineering. Trends in Biotechnology, 22(2), 80–86.

    Article  PubMed  CAS  Google Scholar 

  30. Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., et al. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187.

    Article  PubMed  Google Scholar 

  31. Jawad, H., Ali, N. N., Lyon, A. R., Chen, Q. Z., Harding, S. E., & Boccaccini, A. R. (2007). Myocardial tissue engineering: A review. Journal of Tissue Engineering and Regenerative Medicine, 1, 327–342.

    Article  PubMed  CAS  Google Scholar 

  32. Matsushita, T., Oyamada, M., Fujimoto, K., Yasuda, Y., Masuda, S., Wada, Y., et al. (1999). Remodeling of cell–cell and cell–extracellular matrix interactions at the border zone of rat myocardial infarcts. Circulation Research, 85(11), 1046–1055.

    PubMed  CAS  Google Scholar 

  33. Lokmic, Z., Stillaert, F., Morrison, W. A., Thompson, E. W., & Mitchell, G. M. (2007). An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. The FASEB Journal, 21(2), 511–522.

    Article  PubMed  CAS  Google Scholar 

  34. Tee, R., Lokmic, Z., Morrison, W. A., & Dilley, R. J. (2010). Strategies in cardiac tissue engineering. ANZ Journal of Surgery, 80(10), 683–693.

    Article  PubMed  Google Scholar 

  35. Zimmermann, W.-H. (2001). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230.

    Article  Google Scholar 

  36. Zimmermann, W.-H., Melnychenko, I., Wasmeier, G., Didié, M., Naito, H., Nixdorff, U., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine, 12(4), 452–458.

    Article  PubMed  CAS  Google Scholar 

  37. Black, L. D., Meyers, J. D., Weinbaum, J. S., Shvelidze, Y. A., & Tranquillo, R. T. (2009). Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Engineering. Part A, 15(10), 3099–3108.

    Article  PubMed  CAS  Google Scholar 

  38. Huang, C.-C., Liao, C.-K., Yang, M.-J., Chen, C.-H., Hwang, S.-M., Hung, Y.-W., et al. (2010). A strategy for fabrication of a three-dimensional tissue construct containing uniformly distributed embryoid body-derived cells as a cardiac patch. Biomaterials, 31(24), 6218–6227.

    Article  PubMed  CAS  Google Scholar 

  39. Wei, H.-J., Chen, C.-H., Lee, W.-Y., Chiu, I., Hwang, S.-M., Lin, W.-W., et al. (2008). Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials, 29(26), 3547–3556.

    Article  PubMed  CAS  Google Scholar 

  40. Colazzo, F., Sarathchandra, P., Smolenski, R. T., Chester, A. H., Tseng, Y.-T., Czernuszka, J. T., et al. (2011). Extracellular matrix production by adipose-derived stem cells: Implications for heart valve tissue engineering. Biomaterials, 32(1), 119–127.

    Article  PubMed  CAS  Google Scholar 

  41. Garbade, J., Schubert, A., Rastan, A. J., Lenz, D., Walther, T., Gummert, J. F., et al. (2005). Fusion of bone marrow-derived stem cells with cardiomyocytes in a heterologous in vitro model. European Journal of Cardio-Thoracic Surgery, 28(5), 685–691.

    Article  PubMed  Google Scholar 

  42. Jacot, J. G., Martin, J. C., & Hunt, D. L. (2010). Mechanobiology of cardiomyocyte development. Journal of Biomechanics, 43(1), 93–98.

    Article  PubMed  Google Scholar 

  43. Cavalcanti-Adam, E., Tomakidi, P., Bezler, M., & Spatz, J. (2005). Geometric organization of the extracellular matrix in the control of integrin-mediated adhesion and cell function in osteoblasts. Progress in Orthodontics, 6(2), 232–237.

    PubMed  Google Scholar 

  44. Li, T.-S., Komota, T., Ohshima, M., Qin, S.-L., Kubo, M., Ueda, K., et al. (2008). TGF-beta induces the differentiation of bone marrow stem cells into immature cardiomyocytes. Biochemical and Biophysical Research Communications, 366(4), 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  45. Bouten, C. V. C., Dankers, P. Y. W., Driessen-Mol, A., Pedron, S., Brizard, A. M. A., & Baaijens, F. P. T. (2011). Substrates for cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 63(4–5), 221–241.

    Article  PubMed  CAS  Google Scholar 

  46. Schwartz, M. A., & DeSimone, D. W. (2008). Cell adhesion receptors in mechanotransduction. Current Opinion in Cell Biology, 20(5), 551–556.

    Article  PubMed  CAS  Google Scholar 

  47. Yoneno, K., Ohno, S., Tanimoto, K., Honda, K., Tanaka, N., Doi, T., et al. (2005). Multidifferentiation potential of mesenchymal stem cells in three-dimensional collagen gel cultures. Journal of Biomedical Materials Research. Part A, 75(3), 733–741.

    Article  PubMed  CAS  Google Scholar 

  48. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18129–18134.

    Article  PubMed  CAS  Google Scholar 

  49. Kutschka, I., Chen, I. Y., Kofidis, T., Arai, T., von Degenfeld, G., Sheikh, A. Y., et al. (2006). Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation, 114(1 Suppl), I167–I173.

    PubMed  Google Scholar 

  50. Bauman, L. (2004). Cosmoderm/cosmoplast (human bioengineered collagen) for the aging face. Facial Plastic Surgery, 20(2), 125–128.

    Article  PubMed  Google Scholar 

  51. Geiger, M., Li, R. H., & Friess, W. (2003). Collagen sponges for bone regeneration with rhBMP-2. Advanced Drug Delivery Reviews, 55(12), 1613–1629.

    Article  PubMed  CAS  Google Scholar 

  52. Kleinman, H. K., & Martin, G. R. (2005). Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 15(5), 378–386.

    Article  PubMed  CAS  Google Scholar 

  53. Kofidis, T., de Bruin, J. L., Hoyt, G., Lebl, D. R., Tanaka, M., Yamane, T., et al. (2004). Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. The Journal of Thoracic and Cardiovascular Surgery, 128(4), 571–578.

    PubMed  Google Scholar 

  54. Williams, C., Johnson, S. L., Robinson, P. S., & Tranquillo, R. T. (2006). Cell sourcing and culture conditions for fibrin-based valve constructs. Tissue Engineering, 12(6), 1489–1502.

    Article  PubMed  CAS  Google Scholar 

  55. Jockenhoevel, S., Zund, G., Hoerstrup, S. P., Chalabi, K., Sachweh, J. S., Demircan, L., et al. (2001). Fibrin gel—Advantages of a new scaffold in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery, 19(4), 424–430.

    Article  PubMed  CAS  Google Scholar 

  56. Grassl, E. D., Oegema, T. R., & Tranquillo, R. T. (2003). A fibrin-based arterial media equivalent. Journal of Biomedical Materials Research. Part A, 66(3), 550–561.

    PubMed  CAS  Google Scholar 

  57. Birla, R. K., Borschel, G. H., Dennis, R. G., & Brown, D. L. (2005). Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Engineering, 11(5–6), 803–813.

    Article  PubMed  CAS  Google Scholar 

  58. Linnes, M. P., Ratner, B. D., & Giachelli, C. M. (2007). A fibrinogen-based precision microporous scaffold for tissue engineering. Biomaterials, 28(35), 5298–5306.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, B., Borazjani, A., Tahai, M., Curry, A. L. D. J., Simionescu, D. T., Guan, J., et al. (2010). Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. Journal of Biomedical Materials Research. Part A, 94(4), 1100–1110.

    PubMed  Google Scholar 

  60. Singelyn, J. M., DeQuach, J. A., Seif-Naraghi, S. B., Littlefield, R. B., Schup-Magoffin, P. J., & Christman, K. L. (2009). Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials, 30(29), 5409–5416.

    Article  PubMed  CAS  Google Scholar 

  61. Crapo, P. M., & Wang, Y. (2010). Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Acta Biomaterialia, 6(6), 2091–2096.

    Article  PubMed  CAS  Google Scholar 

  62. Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A. F., et al. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 Suppl), I135–I143.

    PubMed  Google Scholar 

  63. Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675–3683.

    PubMed  CAS  Google Scholar 

  64. Simpson, D. G., Terracio, L., Terracio, M., Price, R. L., Turner, D. C., & Borg, T. K. (1994). Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. Journal of Cellular Physiology, 161(1), 89–105.

    Article  PubMed  CAS  Google Scholar 

  65. Allison, D. D., & Grande-Allen, K. J. (2006). Review. Hyaluronan: A powerful tissue engineering tool. Tissue Engineering, 12(8), 2131–2140.

    Article  PubMed  CAS  Google Scholar 

  66. Ventura, C., Cantoni, S., Bianchi, F., Lionetti, V., Cavallini, C., Scarlata, I., et al. (2007). Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. Journal of Biological Chemistry, 282(19), 14243–14252.

    Article  PubMed  CAS  Google Scholar 

  67. Ruvinov, E., Leor, J., & Cohen, S. (2011). The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials, 32(2), 565–578.

    Article  PubMed  CAS  Google Scholar 

  68. Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I. M., Battler, A., et al. (2000). Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation, 102(suppl III), III-56–III-61.

    CAS  Google Scholar 

  69. Xiang, Z., Liao, R., Kelly, M. S., & Spector, M. (2006). Collagen–GAG scaffolds grafted onto myocardial infarcts in a rat model: A delivery vehicle for mesenchymal stem cells. Tissue Engineering, 12(9), 2467–2478.

    Article  PubMed  CAS  Google Scholar 

  70. Li, R.-K., Jia, Z.-Q., Weisel, R. D., Mickle, D. A. G., Choi, A., & Yau, T. M. (1999). Survival and function of bioengineered cardiac grafts. Circulation, 100(Suppl II), II-63–II-69.

    CAS  Google Scholar 

  71. Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59(4–5), 207–233.

    Article  PubMed  CAS  Google Scholar 

  72. Gunatillake, P. A., & Adhikari, R. (2003). Biodegradable synthetic polymers for tissue engineering. European Cells & Materials, 5, 1–16.

    CAS  Google Scholar 

  73. Davis, M. E., Hsieh, P. C. H., Grodzinsky, A. J., & Lee, R. T. (2005). Custom design of the cardiac microenvironment with biomaterials. Circulation Research, 97(1), 8–15.

    Article  PubMed  CAS  Google Scholar 

  74. Kenar, H., Kose, G. T., & Hasirci, V. (2010). Design of a 3D aligned myocardial tissue construct from biodegradable polyesters. Journal of Materials Science. Materials in Medicine, 21(3), 989–997.

    Article  PubMed  CAS  Google Scholar 

  75. Park, H., Radisic, M., Lim, J. O., Chang, B. H., & Vunjak-Novakovic, G. (2005). A novel composite scaffold for cardiac tissue engineering. In Vitro Cellular & Developmental Biology—Animal, 41(7), 188–196.

    Article  CAS  Google Scholar 

  76. Carrier, R. L., Papadaki, M., Rupnick, M., Schoen, F. J., Bursac, N., Langer, R., et al. (1999). Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and Bioengineering, 64(5), 580–589.

    Article  PubMed  CAS  Google Scholar 

  77. Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I. H. M., et al. (2007). Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circulation Research, 100(2), 263–272.

    Article  PubMed  CAS  Google Scholar 

  78. Engelmayr, G. C., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 7(12), 1003–1010.

    Article  PubMed  CAS  Google Scholar 

  79. Wang, Y., Kim, Y. M., & Langer, R. (2003). In vivo degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research, 66, 192–197.

    Article  PubMed  CAS  Google Scholar 

  80. Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J. E., Wang, Y., Dennis, R., et al. (2006). Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Engineering, 12(8), 2077–2091.

    Article  PubMed  CAS  Google Scholar 

  81. Shimizu, T. (2002). Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circulation Research, 90(3), 40e–48e.

    Article  Google Scholar 

  82. Shin, M., Ishii, O., Sueda, T., & Vacanti, J. P. (2004). Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 25(17), 3717–3723.

    Article  PubMed  CAS  Google Scholar 

  83. Pego, A. P., Siebum, B., Van Luyn, M. J. A., Seijen, X. J. G. Y. V., Poot, A. A., Grijpma, D. W., et al. (2003). Preparation of degradable porous structures based on 1,3-trimethylene carbonate and d, l-lactide (co)polymers for heart tissue engineering. Tissue Engineering, 9(5), 981–994.

    Article  PubMed  CAS  Google Scholar 

  84. Blumenthal, B., Golsong, P., Poppe, A., Heilmann, C., Schlensak, C., Beyersdorf, F., et al. (2010). Polyurethane scaffolds seeded with genetically engineered skeletal myoblasts: A promising tool to regenerate myocardial function. Artificial Organs, 34(2), E46–E54.

    Article  PubMed  CAS  Google Scholar 

  85. Meng, J., Kong, H., Han, Z., Wang, C., Zhu, G., Xie, S., et al. (2009). Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. Journal of Biomedical Materials Research. Part A, 88(1), 105–116.

    Article  PubMed  CAS  Google Scholar 

  86. Liao, I.-C., Liu, J. B., Bursac, N., & Leong, K. W. (2008). Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers. Experimental Cell Research, 1, 133–145.

    CAS  Google Scholar 

  87. Thomson, R., Wake, M., Yaszemski, M., & Mikos, A. (1995). Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science, 122, 245–274.

    CAS  Google Scholar 

  88. Yang, S., Leong, K. F., Du, Z., & Chua, C. K. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 7(6), 679–689.

    Article  PubMed  CAS  Google Scholar 

  89. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.

    Article  PubMed  CAS  Google Scholar 

  90. Glowacki, J., & Mizuno, S. (2008). Collagen scaffolds for tissue engineering. Biopolymers, 89(5), 338–344.

    Article  PubMed  CAS  Google Scholar 

  91. Shapiro, L., & Cohen, S. (1997). Novel alginate sponges for cell culture and transplantation. Biomaterials, 18(8), 583–590.

    Article  PubMed  CAS  Google Scholar 

  92. Mikos, A. G., & Temenoff, J. S. (2000). Formation of highly porous biodegradable scaffolds for tissue engineering. Electronic Journal of Biotechnology, 3, 114–119.

    Google Scholar 

  93. Ott, H. C., Matthiesen, T. S., Goh, S.-K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14(2), 213–221.

    Article  PubMed  CAS  Google Scholar 

  94. Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 5(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  95. Rosso, F., Giordano, A., Barbarisi, M., & Barbarisi, A. (2004). From cell–ECM interactions to tissue engineering. Journal of Cellular Physiology, 199(2), 174–180.

    Article  PubMed  CAS  Google Scholar 

  96. Badylak, S. F., Taylor, D., & Uygun, K. (2011). Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annual Review of Biomedical Engineering, 13, (in press).

  97. Zhong, S., Teo, W. E., Zhu, X., Beuerman, R. W., Ramakrishna, S., Yue, L., et al. (2006). An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. Journal of Biomedical Materials Research. Part A, 79(3), 456–463.

    Article  PubMed  CAS  Google Scholar 

  98. Blakeney, B. A., Tambralli, A., Anderson, J. M., Andukuri, A., Lim, D.-J., Dean, D. R., et al. (2011). Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials, 32(6), 1583–1590.

    Article  PubMed  CAS  Google Scholar 

  99. Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., & Bowlin, G. L. (2009). Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 61(12), 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  100. Szentivanyi, A., Chakradeo, T., Zernetsch, H., & Glasmacher, B. (2011). Electrospun cellular microenvironments: Understanding controlled release and scaffold structure. Advanced Drug Delivery Reviews, 63(4–5), 209–220.

    Article  PubMed  CAS  Google Scholar 

  101. Zong, X., Bien, H., Chung, C.-Y., Yin, L., Fang, D., Hsiao, B. S., et al. (2005). Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 26(26), 5330–5338.

    Article  PubMed  CAS  Google Scholar 

  102. Liu, H., Li, X., Zhou, G., Fan, H., & Fan, Y. (2011). Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials, 32(15), 3784–3793.

    Article  PubMed  CAS  Google Scholar 

  103. McManus, M. C., Boland, E. D., Simpson, D. G., Barnes, C. P., & Bowlin, G. L. (2006). Electrospun fibrinogen: Feasibility as a tissue engineering scaffold in a rat cell culture model. Journal of Biomedical Materials Research. Part A, 81(2), 299–309.

    Google Scholar 

  104. Ma, Z., Kotaki, M., Inai, R., & Ramakrishna, S. (2005). Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering, 11(1–2), 101–109.

    Article  PubMed  Google Scholar 

  105. Drury, J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24(24), 4337–4351.

    Article  PubMed  CAS  Google Scholar 

  106. Nicodemus, G. D., & Bryant, S. J. (2008). Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engineering. Part B, Reviews, 14(2), 149–165.

    Article  PubMed  CAS  Google Scholar 

  107. Bian, W., Liau, B., Badie, N., & Bursac, N. (2010). Mesoscopic hydrogel molding to control the 3D geometry of bioartifical muscle tissues. Nature Protocols, 4(10), 1522–1534.

    Article  CAS  Google Scholar 

  108. Birla, R. K., Huang, Y. C., & Dennis, R. G. (2007). Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Engineering, 13(9), 2239–2248.

    Article  PubMed  CAS  Google Scholar 

  109. Lu, W.-N., Lü, S.-H., Wang, H.-B., Li, D.-X., Duan, C.-M., Liu, Z.-Q., et al. (2009). Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Engineering. Part A, 15(6), 1437–1447.

    Article  PubMed  CAS  Google Scholar 

  110. Krebs, M. D., Sutter, K. A., Lin, A. S. P., Guldberg, R. E., & Alsberg, E. (2009). Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering. Acta Biomaterialia, 5(8), 2847–2859.

    Article  PubMed  CAS  Google Scholar 

  111. Patterson, J., & Hubbell, J. A. (2010). Enhanced proteolytic degradation of molecularly engineered peg hydrogels in response to MMP-1 and MMP-2. Biomaterials, 31(30), 7836–7845.

    Article  PubMed  CAS  Google Scholar 

  112. Zhang, G., Wang, X., Wang, Z., Zhang, J., & Suggs, L. (2006). A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Engineering, 12(1), 9–19.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang, G., Hu, Q., Braunlin, E. A., Suggs, L. J., & Zhang, J. (2008). Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Engineering. Part A, 14(6), 1025–1036.

    Article  PubMed  CAS  Google Scholar 

  114. Ruel-Gariépy, E., & Leroux, J.-C. (2004). In situ-forming hydrogels—Review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 409–426.

    Article  PubMed  CAS  Google Scholar 

  115. Ryan, E. (1999). Structural origins of fibrin clot rheology. Biophysical Journal, 77(5), 2813–2826.

    Article  PubMed  CAS  Google Scholar 

  116. Jia, X., & Kiick, K. L. (2009). Hybrid multicomponent hydrogels for tissue engineering. Macromolecular Bioscience, 9(2), 140–156.

    Article  PubMed  CAS  Google Scholar 

  117. Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869–1880.

    Article  PubMed  CAS  Google Scholar 

  118. Akhyari, P., Kamiya, H., Haverich, A., Karck, M., & Lichtenberg, A. (2008). Myocardial tissue engineering: The extracellular matrix. European Journal of Cardio-Thoracic Surgery, 34(2), 229–241.

    Article  PubMed  Google Scholar 

  119. Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86–100.

    Article  PubMed  CAS  Google Scholar 

  120. Kushida, A., Yamato, M., Konno, C., Kikuchi, A., Sakurai, Y., & Okano, T. (1999). Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. Journal of Biomedical Materials Research, 45(4), 355–362.

    Article  PubMed  CAS  Google Scholar 

  121. Masuda, S., Shimizu, T., Yamato, M., & Okano, T. (2008). Cell sheet engineering for heart tissue repair. Advanced Drug Delivery Reviews, 60(2), 277–285.

    Article  PubMed  CAS  Google Scholar 

  122. Isenberg, B. C., Tsuda, Y., Williams, C., Shimizu, T., Yamato, M., Okano, T., et al. (2008). A thermoresponsive, microtexture substrate for cell sheet engineering with defined structural organization. Biomed Eng (NY), 29(17), 2565–2572.

    CAS  Google Scholar 

  123. Dike, L. E., Chen, C. S., Mrksich, M., Tien, J., Whitesides, G. M., & Ingber, D. E. (1999). Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cellular & Developmental Biology—Animal, 35(8), 441–448.

    Article  CAS  Google Scholar 

  124. Guo, D., Kassiri, Z., & Oudit, G. Y. (2011). Role of signaling pathways in the myocardial response to biomechanical stress and in mechanotransduction in the heart. In A. Kamkin & I. Kiseleva (Eds.), Mechanosensitivity and mechanotransduction (pp. 141–166). Dordrecht: Springer.

    Google Scholar 

  125. Oyamada, M., Kimura, H., Yoamada, Y., Miyamoto, A., Ohshika, H., & Mori, M. (1994). The expression, phosphorylation, and localization of connexin 43 and gap-junctional intercellular communication during the establishment of a synchronized contraction of cultured neonatal rat cardiac myocytes. Experimental Cell Research, 212, 351–358.

    Article  PubMed  CAS  Google Scholar 

  126. Nichol, J. W., Engelmayr, G. C., Cheng, M., & Freed, L. E. (2008). Co-culture induces alignment in engineered cardiac constructs via MMP-2 expression. Biochemical and Biophysical Research Communications, 373(3), 360–365.

    Article  PubMed  CAS  Google Scholar 

  127. Levenberg, S., Rouwkema, J., Macdonald, M., Garfein, E. S., Kohane, D. S., Darland, D. C., et al. (2005). Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 23(7), 879–884.

    Article  PubMed  CAS  Google Scholar 

  128. Morritt, A. N., Bortolotto, S. K., Dilley, R. J., Han, X., Kompa, A. R., McCombe, D., et al. (2007). Cardiac tissue engineering in an in vivo vascularized chamber. Circulation, 115(3), 353–360.

    Article  PubMed  Google Scholar 

  129. Sasagawa, T., Shimizu, T., Sekiya, S., Haraguchi, Y., Yamato, M., Sawa, Y., et al. (2010). Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials, 31(7), 1646–1654.

    Article  PubMed  CAS  Google Scholar 

  130. Chen, Q., Harding, S., Ali, N., Lyon, A., & Boccaccini, A. (2008). Biomaterials in cardiac tissue engineering: Ten years of research survey. Mater Sci Eng R Rep, 59(1–6), 1–37.

    Article  CAS  Google Scholar 

  131. Papadaki, M., Bursac, N., Langer, R., Merok, J., Vunjak-Novakovic, G., & Freed, L. E. (2001). Tissue engineering of functional cardiac muscle: Molecular, structural, and electrophysiological studies. American Journal of Physiology. Heart and Circulatory Physiology, 280(1), H168–H178.

    PubMed  CAS  Google Scholar 

  132. Bilodeau, K., & Mantovani, D. (2006). Bioreactors for tissue engineering: Focus on mechanical constraints. A comparative review. Tissue Engineering, 12(8), 2367–2383.

    Article  PubMed  CAS  Google Scholar 

  133. Radisic, M., Yang, L., Boublik, J., Cohen, R. J., Langer, R., Freed, L. E., et al. (2004). Medium perfusion enables engineering of compact and contractile cardiac tissue. American Journal of Physiology. Heart and Circulatory Physiology, 286(2), H507–H516.

    Article  PubMed  CAS  Google Scholar 

  134. Fink, C., Ergün, S., Kralisch, D., Remmers, U., Weil, J., & Eschenhagen, T. (2000). Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. The FASEB Journal, 14(5), 669–679.

    PubMed  CAS  Google Scholar 

  135. Kraehenbuehl, T. P., Ferreira, L. S., Hayward, A. M., Nahrendorf, M., van der Vlies, A. J., Vasile, E., et al. (2010). Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials, 32(4), 1102–1109.

    Article  PubMed  CAS  Google Scholar 

  136. Perets, A., Baruch, Y., Weisbuch, F., Shoshany, G., Neufeld, G., & Cohen, S. (2003). Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. Journal of Biomedical Materials Research. Part A, 65(4), 489–497.

    PubMed  Google Scholar 

  137. Ferreira, L. S., Gerecht, S., Fuller, J., Shieh, H. F., Vunjak-Novakovic, G., & Langer, R. (2007). Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 28(17), 2706–2717.

    Article  PubMed  CAS  Google Scholar 

  138. Sy, J. C., & Davis, M. E. (2010). Delivering regenerative cues to the heart: Cardiac drug delivery by microspheres and peptide nanofibers. Journal of Cardiovascular Translational Research, 3(5), 461–468.

    Article  PubMed  Google Scholar 

  139. Sapir, Y., Kryukov, O., & Cohen, S. (2011). Integration of multiple cell–matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials, 32(7), 1838–1847.

    Article  PubMed  CAS  Google Scholar 

  140. Spadaccio, C., Chello, M., Trombetta, M., Rainer, A., Toyoda, Y., & Genovese, J. A. (2009). Drug releasing systems in cardiovascular tissue engineering. Journal of Cellular and Molecular Medicine, 13(3), 422–439.

    Article  PubMed  CAS  Google Scholar 

  141. Leor, J., Amsalem, Y., & Cohen, S. (2005). Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacology and Therapeutics, 105(2), 151–163.

    Article  PubMed  CAS  Google Scholar 

  142. Chen, R. R., & Mooney, D. J. (2003). Polymeric growth factor delivery strategies for tissue engineering. Pharmaceutical Research, 20(8), 1103–1112.

    Article  PubMed  CAS  Google Scholar 

  143. Epstein, S. E., Kornowski, R., Fuchs, S., & Dvorak, H. F. (2001). Angiogenesis therapy: Amidst the hype, the neglected potential for serious side effects. Circulation, 104, 115–119.

    PubMed  CAS  Google Scholar 

  144. Christoforou, N., & Gearhart, J. D. (2007). Stem cells and their potential in cell-based cardiac therapies. Progress in Cardiovascular Diseases, 49(6), 396–413.

    Article  PubMed  CAS  Google Scholar 

  145. Zhang, S. J., Truskey, G. A., & Kraus, W. E. (2007). Effect of cyclic stretch on beta1D-integrin expression and activation of FAK and RhoA. American Journal of Physiology. Cell Physiology, 292(6), C2057–C2069.

    Article  PubMed  CAS  Google Scholar 

  146. Rubbens, M. P., Driessen-Mol, A., Boerboom, R. A., Koppert, M. M. J., van Assen, H. C., TerHaar Romeny, B. M., et al. (2009). Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Annals of Biomedical Engineering, 37(7), 1263–1272.

    Article  PubMed  Google Scholar 

  147. Akhyari, P., Fedak, P. W. M., Weisel, R. D., Lee, T.-Y. J., Mickle, D. A. G., & Li, R.-K. (2002). Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 106(suppl I), I-137–I-142.

    Google Scholar 

  148. Wille, J. J., Elson, E. L., & Okamoto, R. J. (2006). Cellular and matrix mechanics of bioartificial tissues during continuous cyclic stretch. Annals of Biomedical Engineering, 34(11), 1678–1690.

    Article  PubMed  Google Scholar 

  149. Asnes, C. F., Marquez, J. P., Elson, E. L., & Wakatsuki, T. (2006). Reconstitution of the Frank–Starling mechanism in engineered heart tissues. Biophysical Journal, 91(5), 1800–1810.

    Article  PubMed  CAS  Google Scholar 

  150. Tandon, N., Cannizzaro, C., Chao, P.-H. G., Maidhof, R., Ting, H., Au, H., et al. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 4(2), 155–173.

    Article  PubMed  CAS  Google Scholar 

  151. Tandon, N., Marsano, A., Maidhof, R., Wan, L., Park, H., & Vunjak-Novakovic, G. (2011). Optimization of electrical stimulation parameters for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5(6), e115–e125.

    Article  PubMed  CAS  Google Scholar 

  152. Kavahagh, K. M., Duff, H. J., Clark, R., Robinson, K. V., Giles, W. R., & Wyse, D. G. (1990). Monophasic versus biphasic cardiac stimulation: Mechanism of decreased energy requirements. Pacing and Clinical Electrophysiology, 13(10), 1268–1276.

    Article  Google Scholar 

  153. Huang, G., Pashmforoush, M., Chung, B., & Saxon, L. A. (2010). The role of cardiac electrophysiology in myocardial regenerative stem cell therapy. Journal of Cardiovascular and Translational Research, 4, 61–65.

    Article  Google Scholar 

  154. Wikswo, J. P., Lin, S. F., & Abbas, R. A. (1995). Virtual electrodes in cardiac tissue: A common mechanism for anodal and cathodal stimulation. Biophysical Journal, 69(6), 2195–2210.

    Article  PubMed  CAS  Google Scholar 

  155. McDonough, P. M., & Glembotski, C. C. (1992). Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. Biochemistry, 267(17), 11665–11668.

    CAS  Google Scholar 

  156. Zimmermann, W.-H., Didié, M., Döker, S., Melnychenko, I., Naito, H., Rogge, C., et al. (2006). Heart muscle engineering: An update on cardiac muscle replacement therapy. Cardiovascular Research, 71(3), 419–429.

    Article  PubMed  CAS  Google Scholar 

  157. Iwakura, A., Fujita, M., Kataoka, K., Tambara, K., Sakakibara, Y., Komeda, M., et al. (2003). Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart and Vessels, 18(2), 93–99.

    Article  PubMed  Google Scholar 

  158. Davis, M. E., Hsieh, P. C. H., Takahashi, T., Song, Q., Zhang, S., Kamm, R. D., et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8155–8160.

    Article  PubMed  CAS  Google Scholar 

  159. Seif-Naraghi, S. B., Salvatore, M. A., Schup-Magoffin, P. J., Hu, D. P., & Christman, K. L. (2010). Design and characterization of an injectable pericardial matrix gel: A potentially autologous scaffold for cardiac tissue engineering. Tissue Engineering. Part A, 16(6), 2017–2027.

    Article  PubMed  CAS  Google Scholar 

  160. Gaudette, G. R., & Cohen, I. S. (2006). Cardiac regeneration: Materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation, 114(24), 2575–2577.

    Article  PubMed  Google Scholar 

  161. Mian, R., Morrison, W. A., Hurley, J. V., Penington, A. J., Romeo, R., Tanaka, Y., et al. (2000). Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Engineering, 6(6), 595–603.

    Article  PubMed  CAS  Google Scholar 

  162. Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., et al. (2009). Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14990–14995.

    Article  PubMed  CAS  Google Scholar 

  163. Kelm, J. M., & Fussenegger, M. (2010). Scaffold-free cell delivery for use in regenerative medicine. Advanced Drug Delivery Reviews, 62(7–8), 753–764.

    Article  PubMed  CAS  Google Scholar 

  164. Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A., et al. (2006). Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. The FASEB Journal, 20(6), 708–710.

    PubMed  CAS  Google Scholar 

  165. Giraud, M.-N., Ayuni, E., Cook, S., Siepe, M., Carrel, T. P., & Tevaearai, H. T. (2008). Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artificial Organs, 32(9), 692–700.

    Article  PubMed  CAS  Google Scholar 

  166. Dimmeler, S., & Zeiher, A. M. (2009). Cell therapy of acute myocardial infarction: Open questions. Cardiology, 113(3), 155–160.

    Article  PubMed  Google Scholar 

  167. Haider, H. K., & Ashraf, M. (2010). Preconditioning and stem cell survival. Journal of Cardiovascular Translational Research, 3(2), 89–102.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Deems Black III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, K.Y., Black, L.D. Strategies for Tissue Engineering Cardiac Constructs to Affect Functional Repair Following Myocardial Infarction. J. of Cardiovasc. Trans. Res. 4, 575–591 (2011). https://doi.org/10.1007/s12265-011-9303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9303-1

Keywords

Navigation