Skip to main content
Log in

Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Past studies using micropatterned substrates coated with adhesive islands of extracellular matrix revealed that capillary endothelial cells can be geometrically switched between growth and apoptosis. Endothelial cells cultured on single islands larger than 1500 µm2 spread and progressed through the cell cycle, whereas cells restricted to areas less than 500 µm2 failed to extend and underwent apoptosis. The present study addressed whether island geometries that constrained cell spreading to intermediate degrees, neither supporting cell growth nor inducing apoptosis, cause cells to differentiate. Endothelial cells cultured on substrates micropatterned with 10-µm-wide lines of fibronectin formed extensive cell-cell contacts and spread to approximately 1000 µm2. Within 72 h, cells shut off both growth and apoptosis programs and underwent differentiation, resulting in the formation of capillary tube-like structures containing a central lumen. Accumulation of extracellular matrix tendrils containing fibronectin and laminin beneath cells and reorganization of platelet endothelial cell adhesion molecule-positive cell-cell junctions along the lengths of the tubes preceded the formation of these structures. Cells cultured on wider (30-µm) lines also formed cell-cell contacts and aligned their actin cytoskeleton, but these cells spread to larger areas (2200 µm2), proliferated, and did not form tubes. Use of micropatterned substrates revealed that altering the geometry of cell spreading can switch endothelial cells among the three major genetic programs that govern angiogenesis—growth, apoptosis and differentiation. The system presented here provides a well-defined adhesive environment in which to further investigate the steps involved in angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausprunk, D. H.; Folkman, J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14:53–65; 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M., et al. Geometric control of cell life and death. Science (Wash DC) 276:1425–1428; 1997.

    Article  CAS  Google Scholar 

  3. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M., et al. Micropatterned surfaces for control of cell shape, position and function. Biotechnol. Prog. 14:356–363; 1998.

    Article  PubMed  CAS  Google Scholar 

  4. Clark, E. R.; Clark, E. L. Microscopic observations on the growth of blood capillaries in the living mammal. Am. J. Anat. 64:251–301; 1938.

    Article  Google Scholar 

  5. Cockerill, G. W.; Gamble, J. R.; Vadas, M. A. Angiogenesis: models and modulators. Int. Rev. Cytol. 159:113–147; 1995.

    PubMed  CAS  Google Scholar 

  6. Coffin, J. D.; Poole, T. J. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 102:735–748; 1988.

    PubMed  CAS  Google Scholar 

  7. Cooper, J. A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105:1473–1481; 1987.

    Article  PubMed  CAS  Google Scholar 

  8. DeLisser, H. M.; Christofidou-Solomidou, M.; Strieter, R. M.; Burdick, M. D., et al. Involvement of endothelial PECAM-I/CD31 in angiogenesis. Am. J. Pathol. 151:671–677; 1997.

    PubMed  CAS  Google Scholar 

  9. Dike, L. E.; Ingber, D. E. Integrin-dependent induction of early response genes in capillary endothelial cells. J. Cell Sci. 109:2855–2863; 1996.

    PubMed  CAS  Google Scholar 

  10. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285:1182; 1971.

    Article  PubMed  CAS  Google Scholar 

  11. Folkman, J.; Klagsburn, M. Angiogenic factors. Science. (Wash DC) 235:442–447; 1987.

    Article  CAS  Google Scholar 

  12. Huang, S.; Chen, C. S.; Ingber, D. E. Control of cyclin D1, p27kip1 and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell 9:3179–3193; 1998.

    PubMed  CAS  Google Scholar 

  13. Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl. Acad. Sci. USA 87:3579–3583; 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Ingber, D. E.; Dike, L. E.; Hansen, L.; Karp, S., et al. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int. Rev. Cytol. 150:173–220; 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Ingber, D. E.; Folkman, J. How does extracellular matrix control capillary morphogenesis? Cell 58:803–805; 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Ingber, D. E.; Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330; 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Ingber, D. E.; Fujita, T.; Kishimoto, S.; Sudo, K., et al. Synthetic analogues of fumigillin that inhibit angiogenesis and suppress tumour growth. Nature (Lond) 348:555–557; 1990.

    Article  CAS  Google Scholar 

  18. Ingber, D. E.; Jamieson, J. D. Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces transduced over basement membrane. In: Andersson, L. C.; Gahmberg, C. G.; Ekblom, P., ed. Gene expression during normal and malignant differentiation. Orlando: Academic Press, Inc.; 1985:13–32.

    Google Scholar 

  19. Ingber, D. E.; Madri, J. A.; Folkman, J. A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119:1768–1775; 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Kudelka, A. P.; Verschraegen, C. F.; Loyer, E. Complete remission of metastatic cervical cancer with angiogenesis inhibitor TNP-470. N. Eng. J. Med. 338:991–992; 1998.

    Article  CAS  Google Scholar 

  21. Kuzuya, M.; Kinsella, J. L. Reorganization of endothelial cord-like structures on basement membrane complex (Matrigel): involvement of transforming growth factor β1. J. Cell. Physiol. 161:267–276; 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Matsumura, T.; Wolff, K.; Patzelbauer, P. Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J. Immunol. 158:3408–3416; 1997.

    PubMed  CAS  Google Scholar 

  23. McNamee, H. P.; Ingber, D. E.; Schwartz, M. A. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J. Cell Biol. 121:673–678; 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Mrksich, M.; Chen, C. S.; Xia, Y.; Dike, L. E., et al. Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA 93:10775–10778; 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Mrksich, M.; Dike, L. E.; Tien, J.; Ingber, D. E., et al. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp. Cell Res. 235:305–310; 1997.

    Article  PubMed  CAS  Google Scholar 

  26. O’Reilly, M. S.; Holmgren, L.; Chen, C.; Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med. 2:689–692; 1996.

    Article  PubMed  CAS  Google Scholar 

  27. O’Reilly, M. S.; Holmgren, L.; Shing, Y.; Chen, C., et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastasis by a Lewis lung carcinoma. Cell 79:315–328; 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Plopper, G. E.; McNamee, H. P.; Dike, L. E.; Bojanowski, C., et al. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell 6:1349–1365; 1995.

    PubMed  CAS  Google Scholar 

  29. Prime, K. L.; Whitesides, G. M. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science (Wash DC) 252:1164–1167; 1991.

    Article  CAS  Google Scholar 

  30. Risau, W.; Flamme, I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11:73–91; 1995.

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz, M. A.; Ingber, D. E.; Lawrence, M.; Springer, T. A., et al. Multiple integrins share the ability to induce elevation of intracellular pH. Exp. Cell Res. 195:533–535; 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Schwartz, M. A.; Lechene, C.; Ingber, D. E. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc. Natl. Acad. Sci. USA. 88:7849–7853; 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Schwartz, M. A.; Schaller, M. D.; Ginsberg, M. H. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 11:549–599; 1995.

    Article  PubMed  CAS  Google Scholar 

  34. Sheibani, N.; Newman, P. J.; Frazier, W. A. Thrombospondin-1, a natural inhibitor of angiogenesis, regulates platelet-endothelial cell adhesion molecule-1 expression and endothelial cell morphogenesis. Mol. Biol. Cell 8:1329–1341; 1997.

    PubMed  CAS  Google Scholar 

  35. Singhvi, R.; Kumar, A.; Lopez, G. P.; Stephanopoulos, G. N., et al. Engineering cell shape and function. Science (Wash DC) 264:696–698; 1994.

    Article  CAS  Google Scholar 

  36. Yamada, K. M. Integrin signaling. Matrix Biol. 16:137–141; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dike, L.E., Chen, C.S., Mrksich, M. et al. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell.Dev.Biol.-Animal 35, 441–448 (1999). https://doi.org/10.1007/s11626-999-0050-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0050-4

Key words

Navigation