Skip to main content

Advertisement

Log in

Phospholipid supplementation can attenuate vaccine-induced depressive-like behavior in mice

  • Environment and Autoimmunity
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Human papillomavirus vaccine (HPVv) is used worldwide for prevention of infection. However several reports link this vaccine, with immune-mediated reactions, especially with neurological manifestations. Our previous results showed that HPVv-Gardasil and aluminum-immunized mice developed behavioral impairments. Studies have shown a positive effect of phospholipid supplementation on depression and cognitive functions in mice. Therefore, our goal was to evaluate the effect of a dietary supplement on vaccine-induced depression. Sixty C57BL/6 female mice were immunized with HPVv-Gardasil, aluminum or the vehicle (n = 20 each group), and half of each group were fed 5 times per week with 0.2 ml of a dietary supplement enriched with phosphatidylcholine. The mice were evaluated for depression at 3 months of age, by the forced swimming test. Both the Gardasil and the aluminum-treated mice developed depressive-like behavior when compared to the control group. The HPVv-Gardasil-immunized mice supplemented with phosphatidylcholine significantly reduced their depressive symptoms. This study confirms our previous studies demonstrating depressive-like behavior in mice vaccinated with HPVv-Gardasil. In addition, it demonstrates the ability of phosphatidylcholine-enriched diet to attenuate depressive-like behavior in the HPVv-Gardasil-vaccinated mice. We suggest that phosphatidylcholine supplementation may serve as a treatment for patients suffering vaccine-related neurological manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HPVv:

Human papillomavirus vaccine

HPV:

Human papillomavirus

ASIA:

Autoimmune/inflammatory syndrome induced by adjuvants

PC:

Phosphatidylcholine

FST:

Forced swimming test

MANOVA:

Multivariate analysis of variance

CNS:

Central nervous system

CFS:

Chronic fatigue syndrome

PS:

Phosphatidylserine

GC:

Glucocorticoid

References

  1. Kash N, et al. Safety and Efficacy data on vaccines and immunization to human papillomavirus. J Clin Med. 2015;4(4):614–33. doi:10.3390/jcm4040614.

    Article  PubMed  PubMed Central  Google Scholar 

  2. McCormack PL, Joura EA. Quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine (Gardasil(R)): a review of its use in the prevention of premalignant genital lesions, genital cancer and genital warts in women. Drugs. 2010;70(18):2449–74. doi:10.2165/11204920-000000000-00000.

    Article  PubMed  Google Scholar 

  3. McCormack PL. Quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine (gardasil((R))): a review of its use in the prevention of premalignant anogenital lesions, cervical and anal cancers, and genital warts. Drugs. 2014;74(11):1253–83. doi:10.1007/s40265-014-0255-z.

    Article  CAS  PubMed  Google Scholar 

  4. Gatto M, et al. Human papillomavirus vaccine and systemic lupus erythematosus. Clin Rheumatol. 2013;32(9):1301–7. doi:10.1007/s10067-013-2266-7.

    Article  PubMed  Google Scholar 

  5. Geier DA, Geier MR. A case-control study of quadrivalent human papillomavirus vaccine-associated autoimmune adverse events. Clin Rheumatol. 2015;34(7):1225–31. doi:10.1007/s10067-014-2846-1.

    Article  PubMed  Google Scholar 

  6. Inbar R, et al. Behavioral abnormalities in female mice following administration of aluminum adjuvants and the human papillomavirus (HPV) vaccine Gardasil. Immunol Res. 2016. doi:10.1007/s12026-016-8826-6.

    PubMed  Google Scholar 

  7. Pellegrino P, et al. On the relationship between human papilloma virus vaccine and autoimmune diseases. Autoimmun Rev. 2014;13(7):736–41. doi:10.1016/j.autrev.2014.01.054.

    Article  CAS  PubMed  Google Scholar 

  8. Tomljenovic L, Shaw CA. Human papillomavirus (HPV) vaccine policy and evidence-based medicine: are they at odds? Ann Med. 2013;45(2):182–93. doi:10.3109/07853890.2011.645353.

    Article  PubMed  Google Scholar 

  9. Kanduc D. Potential cross-reactivity between HPV16 L1 protein and sudden death-associated antigens. J Exp Ther Oncol. 2011;9(2):159–65.

    CAS  PubMed  Google Scholar 

  10. Kanduc D. Quantifying the possible cross-reactivity risk of an HPV16 vaccine. J Exp Ther Oncol. 2009;8(1):65–76.

    CAS  PubMed  Google Scholar 

  11. Li Z, Vance DE. Phosphatidylcholine and choline homeostasis. J Lipid Res. 2008;49(6):1187–94. doi:10.1194/jlr.R700019-JLR200.

    Article  CAS  PubMed  Google Scholar 

  12. Tayebati SK, Amenta F. Choline-containing phospholipids: relevance to brain functional pathways. Clin Chem Lab Med. 2013;51(3):513–21. doi:10.1515/cclm-2012-0559.

    Article  CAS  PubMed  Google Scholar 

  13. Kim HY, et al. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res. 2014;56:1–18. doi:10.1016/j.plipres.2014.06.002.

    Article  CAS  PubMed  Google Scholar 

  14. Vickers MH, et al. Supplementation with a mixture of complex lipids derived from milk to growing rats results in improvements in parameters related to growth and cognition. Nutr Res. 2009;29(6):426–35. doi:10.1016/j.nutres.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  15. Rondanelli M, et al. Long chain omega 3 polyunsaturated fatty acids supplementation in the treatment of elderly depression: effects on depressive symptoms, on phospholipids fatty acids profile and on health-related quality of life. J Nutr Health Aging. 2011;15(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  16. Rondanelli M, et al. Effect of omega-3 fatty acids supplementation on depressive symptoms and on health-related quality of life in the treatment of elderly women with depression: a double-blind, placebo-controlled, randomized clinical trial. J Am Coll Nutr. 2010;29(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  17. Benton D, et al. The influence of phosphatidylserine supplementation on mood and heart rate when faced with an acute stressor. Nutr Neurosci. 2001;4(3):169–78.

    Article  CAS  PubMed  Google Scholar 

  18. Katzav A, et al. Induction of autoimmune depression in mice by anti-ribosomal P antibodies via the limbic system. Arthritis Rheum. 2007;56(3):938–48. doi:10.1002/art.22419.

    Article  CAS  PubMed  Google Scholar 

  19. Porsolt RD, et al. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1997;229:327–36.

    Google Scholar 

  20. Katzav A, et al. Anti-P ribosomal antibodies induce defect in smell capability in a model of CNS -SLE (depression). J Autoimmun. 2008;31(4):393–8. doi:10.1016/j.jaut.2008.09.002.

    Article  CAS  PubMed  Google Scholar 

  21. De Rosario-Martinez H, et al. Post-Hoc interaction Analysis—package ‘phia’. 0.2-1 ed2015. 2015. https://cran.r-project.org/web/packages/phia/phia.pdf

  22. Alijotas-Reig J. Human adjuvant-related syndrome or autoimmune/inflammatory syndrome induced by adjuvants. Where have we come from? Where are we going? A proposal for new diagnostic criteria. Lupus. 2015;24(10):1012–8. doi:10.1177/0961203315579092.

    Article  CAS  PubMed  Google Scholar 

  23. Karussis D, Petrou P. The spectrum of post-vaccination inflammatory CNS demyelinating syndromes. Autoimmun Rev. 2013;13(3):215–24. doi:10.1016/j.autrev.2013.10.003.

    Article  Google Scholar 

  24. Narcolepsy AS, et al. A(H1N1) pandemic influenza, and pandemic influenza vaccinations: what is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants. J Autoimmun. 2009;50:1–11. doi:10.1016/j.jaut.2014.01.033.

    Google Scholar 

  25. McCarthy JE, Filiano J. Opsoclonus Myoclonus after human papilloma virus vaccine in a pediatric patient. Parkinsonism Relat Disord. 2009;15(10):792–4. doi:10.1016/j.parkreldis.2009.04.002.

    Article  PubMed  Google Scholar 

  26. Colafrancesco S, et al. HPV vaccines and primary ovarian failure: another facet of the autoimmune/inflammatory syndrome induced by adjuvants (ASIA). Am J Reprod Immunol. 2013;70(4):309–16.

    Article  CAS  PubMed  Google Scholar 

  27. Shaw CA, Petrik MS. Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem. 2009;103(11):1555–62. doi:10.1016/j.jinorgbio.2009.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rogers MA, Simon DG. A preliminary study of dietary aluminium intake and risk of Alzheimer’s disease. Age Aging. 1999;28(2):205–9.

    Article  CAS  Google Scholar 

  29. Bishop NJ, et al. Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. N Engl J Med. 1997;336(22):1557–61. doi:10.1056/NEJM199705293362203.

    Article  CAS  PubMed  Google Scholar 

  30. Walton JR. Evidence that ingested aluminum additives contained in processed foods and alum-treated drinking water are a major risk factor for Alzheimer’s disease. Curr Inorg Chem. 2012;2(1):19–39.

    Article  CAS  Google Scholar 

  31. Rondeau V, et al. Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. Am J Epidemiol. 2000;152(1):59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. ATSDR. Toxicological profile for aluminum. Atlanta: Agency for toxic substances and disease registry; 2008.

    Google Scholar 

  33. Tomljenovic L. Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis. 2011;23(4):567–98. doi:10.3233/Jad-2010-101494.

    CAS  PubMed  Google Scholar 

  34. Perl DP, Moalem S. Aluminum, Alzheimer’s disease and the geospatial occurrence of similar disorders. Rev Mineral Geochem. 2006;64:115–34.

    Article  CAS  Google Scholar 

  35. Authier FJ, et al. Central nervous system disease in patients with macrophagic myofasciitis. Brain. 2001;124(Pt 5):974–83.

    Article  CAS  PubMed  Google Scholar 

  36. Exley C, et al. Elevated urinary excretion of aluminium and iron in multiple sclerosis. Mult Scler. 2006;12(5):533–40.

    Article  CAS  PubMed  Google Scholar 

  37. Melendez L, et al. Aluminium and other metals may pose a risk to children with autism spectrum disorder: biochemical and behavioural impairments. Clin Exp Pharmacol. 2013;3(1):120. doi:10.4172/2161-1459.1000120.

    Article  Google Scholar 

  38. Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem. 2011;105(11):1489–99. doi:10.1016/j.jinorgbio.2011.08.008.

    Article  CAS  PubMed  Google Scholar 

  39. Seneff S, et al. Empirical data confirm autism symptoms related to aluminum and acetaminophen exposure. Entropy. 2012;14:2227–53.

    Article  CAS  Google Scholar 

  40. Redhead K, et al. Aluminium-adjuvanted vaccines transiently increase aluminium levels in murine brain tissue. Pharmacol Toxicol. 1992;70(4):278–80.

    Article  CAS  PubMed  Google Scholar 

  41. Khan Z, et al. Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Med. 2013;11:99. doi:10.1186/1741-7015-11-99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lujan L, et al. Autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA syndrome) in commercial sheep. Immunol Res. 2013;56(2–3):317–24. doi:10.1007/s12026-013-8404-0.

    Article  CAS  PubMed  Google Scholar 

  43. Vasudevaraju P, et al. Molecular toxicity of aluminium in relation to neurodegeneration. Indian J Med Res. 2008;128(4):545–56.

    CAS  PubMed  Google Scholar 

  44. Obulesu M, Rao DM. Animal models of Alzheimer’s disease: an understanding of pathology and therapeutic avenues. Int J Neurosci. 2010;120(8):531–7. doi:10.3109/00207451003760080.

    Article  CAS  PubMed  Google Scholar 

  45. Kumar V, et al. Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium. Brain Res. 2008;1232:94–103. doi:10.1016/j.brainres.2008.07.028.

    Article  CAS  PubMed  Google Scholar 

  46. Agarwal SK, et al. Evaluation of the developmental neuroendocrine and reproductive toxicology of aluminium. Food Chem Toxicol. 1996;34(1):49–53. doi:10.1016/0278-6915(95)00088-7.

    Article  CAS  PubMed  Google Scholar 

  47. Singla N, Dhawan DK. Regulatory role of zinc during aluminium-induced altered carbohydrate metabolism in rat brain. J Neurosci Res. 2012;90(3):698–705. doi:10.1002/jnr.22790.

    Article  CAS  PubMed  Google Scholar 

  48. Walton JR. Aluminum Disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and Alzheimer’s disease. J Alzheimers Dis. 2012;29(2):255–73. doi:10.3233/JAD-2011-111712.

    CAS  PubMed  Google Scholar 

  49. Shafer TJ, et al. Mechanisms underlying AlCl3 inhibition of agonist-stimulated inositol phosphate accumulation. Role of calcium, G-proteins, phospholipase C and protein kinase C. Biochem Pharmacol. 1994;47(8):1417–25. doi:10.1016/0006-2952(94)90342-5.

    Article  CAS  PubMed  Google Scholar 

  50. Agmon-Levin N, et al. Immunization with hepatitis B vaccine accelerates SLE-like disease in a murine model. J Autoimmun. 2014;54:21–32. doi:10.1016/j.jaut.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

  51. Kullenberg D, et al. Health effects of dietary phospholipids. Lipids Health Dis. 2012;11:3. doi:10.1186/1476-511X-11-3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yechiel E, Barenholz Y. Relationships between membrane lipid composition and biological properties of rat myocytes. Effects of aging and manipulation of lipid composition. J Biol Chem. 1985;260(16):9123–31.

    CAS  PubMed  Google Scholar 

  53. Nicolson GL, Ash ME. Lipid replacement therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. Biochim Biophys Acta. 1838;6:1657–79. doi:10.1016/j.bbamem.2013.11.010.

    Google Scholar 

  54. Borella E, et al. Lipid replacement therapy: is it a new approach in patients with chronic fatigue syndrome? J Autoimmune Dis Rheumatol. 2014;2:28–34.

    Article  Google Scholar 

  55. Corwin J, et al. Behavioral effects of phosphatidylserine in the aged Fischer 344 rat: amelioration of passive avoidance deficits without changes in psychomotor task performance. Neurobiol Aging. 1985;6(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  56. Park HJ, et al. Enhanced learning and memory of normal young rats by repeated oral administration of Krill Phosphatidylserine. Nutr Neurosci. 2013;16(2):47–53. doi:10.1179/1476830512Y.0000000029.

    Article  CAS  PubMed  Google Scholar 

  57. Kanno T, et al. DL-/PO-phosphatidylcholine restores restraint stress-induced depression-related behaviors and spatial memory impairment. Behav Pharmacol. 2014;25(5–6):575–81. doi:10.1097/FBP.0000000000000063.

    CAS  PubMed  Google Scholar 

  58. Baumeister J, et al. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr Neurosci. 2008;11(3):103–10. doi:10.1179/147683008X301478.

    Article  CAS  PubMed  Google Scholar 

  59. Vakhapova V, et al. Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in non-demented elderly with memory complaints: a double-blind placebo-controlled trial. Dement Geriatr Cogn Disord. 2010;29(5):467–74. doi:10.1159/000310330.

    Article  CAS  PubMed  Google Scholar 

  60. Kato-Kataoka A, et al. Soybean-derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. J Clin Biochem Nutr. 2010;47(3):246–55. doi:10.3164/jcbn.10-62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Manuel Y Keenoy B, et al. Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sci. 2001;68(17):2037–49.

    Article  CAS  PubMed  Google Scholar 

  62. Pall ML. Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome. Med Hypotheses. 2000;54(1):115–25. doi:10.1054/mehy.1998.0825.

    Article  CAS  PubMed  Google Scholar 

  63. Richards RS, et al. Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome. Redox Rep. 2000;5(1):35–41. doi:10.1179/rer.2000.5.1.35.

    Article  CAS  PubMed  Google Scholar 

  64. Tayebati SK, Amenta F. Choline-containing phospholipids: relevance to brain functional pathways. Clin Chem Lab Med. 2013;51(3):513–21. doi:10.1515/cclm-2012-0559.

    Article  CAS  PubMed  Google Scholar 

  65. Delwaide PJ, et al. Double-blind randomized controlled study of phosphatidylserine in senile demented patients. Acta Neurol Scand. 1986;73(2):136–40.

    Article  CAS  PubMed  Google Scholar 

  66. Glade MJ, Smith K. Phosphatidylserine and the human brain. Nutrition. 2015;31(6):781–6. doi:10.1016/j.nut.2014.10.014.

    Article  CAS  PubMed  Google Scholar 

  67. Oliveira TG, et al. The impact of chronic stress on the rat brain lipidome. Mol Psychiatry. 2016;21(1):80–8. doi:10.1038/mp.2015.14.

    Article  CAS  PubMed  Google Scholar 

  68. Leon A, et al. Effect of brain cortex phospholipids on adenylate-cyclase activity of mouse brain. J Neurochem. 1978;30(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  69. Casamenti F, et al. Effect of phosphatidylserine on acetylcholine output from the cerebral cortex of the rat. J Neurochem. 1979;32(2):529–33.

    Article  CAS  PubMed  Google Scholar 

  70. Casamenti F, et al. Phosphatidylserine reverses the age-dependent decrease in cortical acetylcholine release: a microdialysis study. Eur J Pharmacol. 1991;194(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  71. Ali HA, et al. Quercetin and omega 3 ameliorate oxidative stress induced by aluminium chloride in the brain. J Mol Neurosci. 2014;53(4):654–60. doi:10.1007/s12031-014-0232-8.

    Article  PubMed  Google Scholar 

  72. Nicolson GL, Conklin KA. Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Clin Exp Metastasis. 2008;25(2):161–9. doi:10.1007/s10585-007-9129-z.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Judy and Stewart Colton as part of the Ph.D. Project of María-Teresa Arango.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehuda Shoenfeld.

Ethics declarations

Conflict of interest

Yehuda Shoenfeld has acted as a consultant for the no-fault U.S. National Vaccine Injury Compensation Program. The other co-authors declare no competing interests.

Additional information

Shaye Kivity and Maria-Teresa Arango have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivity, S., Arango, MT., Molano-González, N. et al. Phospholipid supplementation can attenuate vaccine-induced depressive-like behavior in mice. Immunol Res 65, 99–105 (2017). https://doi.org/10.1007/s12026-016-8818-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-016-8818-6

Keywords

Navigation