Skip to main content
Log in

Quadrivalent Human Papillomavirus (Types 6, 11, 16, 18) Recombinant Vaccine (Gardasil®): A Review of Its Use in the Prevention of Premalignant Anogenital Lesions, Cervical and Anal Cancers, and Genital Warts

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Quadrivalent human papillomavirus (HPV) [types 6, 11, 16, 18] recombinant vaccine (Gardasil®; Silgard®) is composed of virus-like particles formed by self-assembly of recombinant L1 capsid protein from each of HPV types 6, 11, 16 and 18. It is indicated for use from the age of 9 years as a two- or three-dose vaccination course over 6 months for the prevention of premalignant anogenital lesions, cervical and anal cancers, and genital warts caused by the vaccine HPV types. In placebo-controlled trials, quadrivalent HPV vaccine provided high-level protection against infection or disease caused by the vaccine HPV types over 2–4 years in females aged 15–45 years who were negative for the vaccine HPV types, and provided a degree of cross-protection against certain non-vaccine HPV types. The vaccine also provided high-level protection against persistent infection, anogenital precancerous lesions and genital warts caused by the vaccine HPV types over 3 years in susceptible males aged 16–26 years. Protection has been demonstrated for up to 8 years. In subjects who were negative for the vaccine HPV types, high seroconversion rates and high levels of anti-HPV antibodies were observed in females of all age ranges from 9 to 45 years and in males aged 9–26 years. The vaccine was generally well tolerated and was usually predicted to be cost effective in girls and young women. Therefore, quadrivalent HPV vaccine offers an effective means to substantially reduce the burden of HPV-related anogenital disease in females and males, particularly cervical cancer and genital warts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stanley M. Prophylactic HPV vaccines: prospects for eliminating ano-genital cancer. Br J Cancer. 2007;96(9):1320–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Block SL, Nolan T, Sattler C, et al. Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics. 2006;118(5):2135–45.

    PubMed  Google Scholar 

  3. Collins S, Mazloomzadeh S, Winter H, et al. High incidence of cervical human papillomavirus infection in women during their first sexual relationship. BJOG. 2002;109(1):96–8.

    PubMed  Google Scholar 

  4. Winer RL, Lee SK, Hughes JP, et al. Genital human papillomavirus infection: incidence and risk factors in a cohort of female university students. Am J Epidemiol. 2003;157(3):218–26.

    PubMed  Google Scholar 

  5. Winer RL, Kiviat NB, Hughes JP, et al. Development and duration of human papillomavirus lesions, after initial infection. J Infect Dis. 2005;191(5):731–8.

    PubMed  Google Scholar 

  6. Munoz N, Bosch FX, Castellsague X, et al. Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer. 2004;111(2):278–85.

    CAS  PubMed  Google Scholar 

  7. Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.

    CAS  PubMed  Google Scholar 

  8. International Agency for Research on Cancer. GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. 2014. http://globocan.iarc.fr/Pages/fact_sheets_population.aspx. Accessed 8 April 2014.

  9. Kreimer AR, Clifford GM, Boyle P, et al. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev. 2005;14(2):467–75.

    CAS  Google Scholar 

  10. Parkin DM, Bray F. Chapter 2: The burden of HPV-related cancers. Vaccine. 2006;24(Suppl 3):S3/11–25.

  11. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–44.

    CAS  PubMed  Google Scholar 

  12. Garland SM, Steben M, Sings HL, et al. Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. J Infect Dis. 2009;199(6):805–14.

    PubMed  Google Scholar 

  13. Lacey CJ, Lowndes CM, Shah KV. Chapter 4: Burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease. Vaccine. 2006;24(Suppl 3):S3/35–41.

  14. European Medicines Agency. Gardasil (human papillomavirus vaccine [types 6, 11, 16, 18], recombinant, adsorbed): summary of product characteristics. 2014. http://www.ema.europa.eu/ema/. Accessed 20 June 2014.

  15. European Medicines Agency. Cervarix (human papillomavirus vaccine [types 16, 18] (recombinant, adjuvanted, adsorbed): summary of product characteristics. 2011. http://www.ema.europa.eu/ema/. Accessed 20 June 2014.

  16. Garland SM, Smith JS. Human papillomavirus vaccines: current status and future prospects. Drugs. 2010;70(9):1079–98.

    PubMed  Google Scholar 

  17. Villa LL, Costa RL, Petta CA, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 2005;6(5):271–8.

    PubMed  Google Scholar 

  18. Villa LL, Ault KA, Giuliano AR, et al. Immunologic responses following administration of a vaccine targeting human papillomavirus types 6, 11, 16, and 18. Vaccine. 2006;24(27–28):5571–83.

    CAS  PubMed  Google Scholar 

  19. Garland SM, Hernandez-Avila M, Wheeler CM, et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med. 2007;356(19):1928–43.

    CAS  PubMed  Google Scholar 

  20. Joura EA, Kjaer SK, Wheeler CM, et al. HPV antibody levels and clinical efficacy following administration of a prophylactic quadrivalent HPV vaccine. Vaccine. 2008;26(52):6844–51.

    CAS  PubMed  Google Scholar 

  21. The FUTURE II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356(19):1915–27.

    Google Scholar 

  22. Olsson SE, Villa LL, Costa RL, et al. Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine. 2007;25(26):4931–9.

    CAS  PubMed  Google Scholar 

  23. Munoz N, Manalastas R Jr, Pitisuttithum P, et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24–45 years: a randomised, double-blind trial. Lancet. 2009;373(9679):1949–57.

    CAS  PubMed  Google Scholar 

  24. Castellsagué X, Munoz N, Pitisuttithum P, et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br J Cancer. 2011;105(1):28–37.

    PubMed Central  PubMed  Google Scholar 

  25. Giuliano AR, Palefsky JM, Goldstone S, et al. Efficacy of quadrivalent HPV vaccine against HPV infection and disease in males. N Engl J Med. 2011;364(5):401–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Dobson SR, McNeil S, Dionne M, et al. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs 3 doses in young women: a randomized clinical trial. JAMA. 2013;309(17):1793–802.

    CAS  PubMed  Google Scholar 

  27. Dias D, Van Doren J, Schlottmann S, et al. Optimization and validation of a multiplexed luminex assay to quantify antibodies to neutralizing epitopes on human papillomaviruses 6, 11, 16, and 18. Clin Diagn Lab Immunol. 2005;12(8):959–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Brown DR, Garland SM, Ferris DG, et al. The humoral response to Gardasil over four years as defined by total IgG and competitive Luminex immunoassay. Hum Vaccin. 2011;7(2):230–8.

    CAS  PubMed  Google Scholar 

  29. Einstein MH, Baron M, Levin MJ, et al. Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin. 2009;5(10):705–19.

    CAS  PubMed  Google Scholar 

  30. Einstein MH, Baron M, Levin MJ, et al. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: follow-up from months 12–24 in a phase III randomized study of healthy women aged 18–45 years. Hum Vaccin. 2011;7(12):1343–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Draper E, Bissett SL, Howell-Jones R, et al. A randomized, observer-blinded immunogenicity trial of Cervarix® and Gardasil® human papillomavirus vaccines in 12–15 year old girls. PLoS One. 2013;8(5):e61825.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Roberts C, Swoyer R, Bryan J. Evaluation of the HPV 18 antibody response in Gardasil vaccinees after 48 months using a pseudovirion neutralization assay. Hum Vaccin Immunother. 2012;8(4):431–4.

    CAS  PubMed  Google Scholar 

  33. Giuliano AR, Lazcano-Ponce E, Villa L, et al. Impact of baseline covariates on the immunogenicity of a quadrivalent (types 6, 11, 16, and 18) human papillomavirus virus-like-particle vaccine. J Infect Dis. 2007;196(8):1153–62.

    PubMed  Google Scholar 

  34. Garland SM, Steben M, Hernandez-Avila M, et al. Noninferiority of antibody response to human papillomavirus type 16 in subjects vaccinated with monovalent and quadrivalent L1 virus-like particle vaccines. Clin Vaccine Immunol. 2007;14(6):792–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Smith JF, Brownlow M, Brown M, et al. Antibodies from women immunized with Gardasil cross-neutralize HPV 45 pseudovirions. Hum Vaccin. 2007;3(4):109–15.

    CAS  PubMed  Google Scholar 

  36. Reisinger KS, Block SL, Lazcano-Ponce E, et al. Safety and persistent immunogenicity of a quadrivalent human papillomavirus types 6, 11, 16, 18 L1 virus-like particle vaccine in preadolescents and adolescents: a randomized controlled trial. Pediatr Infect Dis J. 2007;26(3):201–9.

    PubMed  Google Scholar 

  37. Li R, Li Y, Radley D, et al. Safety and immunogenicity of a vaccine targeting human papillomavirus types 6, 11, 16 and 18: a randomized, double-blind, placebo-controlled trial in Chinese males and females. Vaccine. 2012;30(28):4284–91.

    CAS  PubMed  Google Scholar 

  38. Hillman RJ, Giuliano AR, Palefsky JM, et al. Immunogenicity of the quadrivalent human papillomavirus (type 6/11/16/18) vaccine in males 16 to 26 years old. Clin Vaccine Immunol. 2012;19(2):261–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Wheeler CM, Bautista OM, Tomassini JE, et al. Safety and immunogenicity of co-administered quadrivalent human papillomavirus (HPV)-6/11/16/18 L1 virus-like particle (VLP) and hepatitis B (HBV) vaccines. Vaccine. 2008;26(5):686–96.

    CAS  PubMed  Google Scholar 

  40. Vesikari T, Van Damme P, Lindblad N, et al. An open-label, randomized, multicenter study of the safety, tolerability, and immunogenicity of quadrivalent human papillomavirus (types 6/11/16/18) vaccine given concomitantly with diphtheria, tetanus, pertussis, and poliomyelitis vaccine in healthy adolescents 11 to 17 years of age. Pediatr Infect Dis J. 2010;29(4):314–8.

    PubMed  Google Scholar 

  41. Reisinger KS, Block SL, Collins-Ogle M, et al. Safety, tolerability, and immunogenicity of gardasil given concomitantly with Menactra and Adacel. Pediatrics. 2010;125(6):1142–51.

    PubMed  Google Scholar 

  42. Arguedas A, Soley C, Loaiza C, et al. Safety and immunogenicity of one dose of MenACWY-CRM, an investigational quadrivalent meningococcal glycoconjugate vaccine, when administered to adolescents concomitantly or sequentially with Tdap and HPV vaccines. Vaccine. 2010;28(18):3171–9.

    CAS  PubMed  Google Scholar 

  43. Noronha AS, Markowitz LE, Dunne EF. Systematic review of human papillomavirus vaccine coadministration. Vaccine. 2014. doi:10.1016/j.vaccine.2013.12.037.

    PubMed  Google Scholar 

  44. Malagon T, Drolet M, Boily M-C, et al. Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(10):781–9.

    CAS  PubMed  Google Scholar 

  45. Petras M, Sykora T, Andrys C, et al. Post-vaccination anti-human papillomavirus antibody seroprevalence among Czech teenaged girls and women. Int J Gynaecol Obstet. 2012;119(2):178–81.

    PubMed  Google Scholar 

  46. Ruiz W, McClements WL, Jansen KU, et al. Kinetics and isotype profile of antibody responses in rhesus macaques induced following vaccination with HPV 6, 11, 16 and 18 L1-virus-like particles formulated with or without Merck aluminum adjuvant. J Immune Based Ther Vaccines. 2005;3(1):2.

    PubMed Central  PubMed  Google Scholar 

  47. Mok CC, Ho LY, Fong LS, et al. Immunogenicity and safety of a quadrivalent human papillomavirus vaccine in patients with systemic lupus erythematosus: a case–control study. Ann Rheum Dis. 2013;72(5):659–64.

    CAS  PubMed  Google Scholar 

  48. Jacobson DL, Bousvaros A, Ashworth L, et al. Immunogenicity and tolerability to human papillomavirus-like particle vaccine in girls and young women with inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(7):1441–9.

    PubMed Central  PubMed  Google Scholar 

  49. Kahn JA, Xu J, Kapogiannis BG, et al. Immunogenicity and safety of the human papillomavirus 6, 11, 16, 18 vaccine in HIV-infected young women. Clin Infect Dis. 2013;57(5):735–44.

    CAS  PubMed  Google Scholar 

  50. Wilkin T, Lee JY, Lensing SY, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in HIV-1-infected men. J Infect Dis. 2010;202(8):1246–53.

    PubMed Central  PubMed  Google Scholar 

  51. Levin MJ, Moscicki AB, Song LY, et al. Safety and immunogenicity of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine in HIV-infected children 7 to 12 years old. J Acquir Immune Defic Syndr. 2010;55(2):197–204.

    PubMed Central  PubMed  Google Scholar 

  52. Yoshikawa H, Ebihara K, Tanaka Y, et al. Efficacy of quadrivalent human papillomavirus (types 6, 11, 16 and 18) vaccine (GARDASIL) in Japanese women aged 18–26 years. Cancer Sci. 2013;104(4):465–72.

    CAS  PubMed  Google Scholar 

  53. Villa LL, Costa RL, Petta CA, et al. High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. Br J Cancer. 2006;95(11):1459–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Ali H, Donovan B, Wand H, et al. Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ. 2013;346:f2032.

    PubMed  Google Scholar 

  55. Baandrup L, Blomberg M, Dehlendorff C, et al. Significant decrease in the incidence of genital warts in young Danish women after implementation of a national human papillomavirus vaccination program. Sex Transm Dis. 2013;40(2):130–5.

    PubMed  Google Scholar 

  56. Baldur-Felskov B, Dehlendorff C, Munk C, et al. Early impact of human papillomavirus vaccination on cervical neoplasia: nationwide follow-up of young Danish women. J Natl Cancer Inst. 2014. doi:10.1093/jnci/djt460.

    PubMed  Google Scholar 

  57. Bauer HM, Wright G, Chow J. Evidence of human papillomavirus vaccine effectiveness in reducing genital warts: an analysis of California public family planning administrative claims data, 2007–2010. Am J Public Health. 2012;102(5):833–5.

    PubMed Central  PubMed  Google Scholar 

  58. Blomberg M, Dehlendorff C, Munk C, et al. Strongly decreased risk of genital warts after vaccination against human papillomavirus: nationwide follow-up of vaccinated and unvaccinated girls in Denmark. Clin Infect Dis. 2013. doi:10.1093/cid/cit436.

    Google Scholar 

  59. Brotherton JM, Fridman M, May CL, et al. Early effect of the HPV vaccination programme on cervical abnormalities in Victoria, Australia: an ecological study. Lancet. 2011;377(9783):2085–92.

    PubMed  Google Scholar 

  60. Crowe E, Pandeya N, Brotherton JM, et al. Effectiveness of quadrivalent human papillomavirus vaccine for the prevention of cervical abnormalities: case–control study nested within a population based screening programme in Australia. BMJ. 2014;348:g1458.

    PubMed Central  PubMed  Google Scholar 

  61. Delere Y, Remschmidt C, Leuschner J, et al. Human papillomavirus prevalence and probable first effects of vaccination in 20 to 25 year-old women in Germany: a population-based cross-sectional study via home-based self-sampling. BMC Infect Dis. 2014;14(1):87.

    PubMed Central  PubMed  Google Scholar 

  62. Flagg EW, Schwartz R, Weinstock H. Prevalence of anogenital warts among participants in private health plans in the United States, 2003–2010: potential impact of human papillomavirus vaccination. Am J Public Health. 2013;103(8):1428–35.

    PubMed  Google Scholar 

  63. Gertig DM, Brotherton JM, Budd AC, et al. Impact of a population-based HPV vaccination program on cervical abnormalities: a data linkage study. BMC Med. 2013;11:227.

    PubMed Central  PubMed  Google Scholar 

  64. Korostil IA, Ali H, Guy RJ, et al. Near elimination of genital warts in Australia predicted with extension of human papillomavirus vaccination to males. Sex Transm Dis. 2013;40(11):833–5.

    PubMed  Google Scholar 

  65. Leval A, Herweijer E, Ploner A, et al. Quadrivalent human papillomavirus vaccine effectiveness: a Swedish national cohort study. J Natl Cancer Inst. 2013;105(7):469–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Markowitz LE, Hariri S, Lin C, et al. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003–2010. J Infect Dis. 2013;208(3):385–93.

    CAS  PubMed  Google Scholar 

  67. Mikolajczyk RT, Kraut AA, Horn J, et al. Changes in incidence of anogenital warts diagnoses after the introduction of human papillomavirus vaccination in Germany: an ecologic study. Sex Transm Dis. 2013;40(1):28–31.

    PubMed  Google Scholar 

  68. Nsouli-Maktabi H, Ludwig SL, Yerubandi UD, et al. Incidence of genital warts among U.S. service members before and after the introduction of the quadrivalent human papillomavirus vaccine. MSMR. 2013;20(2):17–20.

  69. Oliphant J, Perkins N. Impact of the human papillomavirus (HPV) vaccine on genital wart diagnoses at Auckland Sexual Health Services. N Z Med J. 2011;124(1339):51–8.

    PubMed  Google Scholar 

  70. Luna J, Plata M, Gonzalez M, et al. Long-term follow-up observation of the safety, immunogenicity, and effectiveness of Gardasil in adult women. PLoS One. 2013;8(12):e83431.

    PubMed Central  PubMed  Google Scholar 

  71. Goldstone S. Long-term effectiveness of quadrivalent HPV vaccine against non-vaccine HPV types in men. The protocol 020 investigators (abstract no. OC 6-4). In: EUROGIN 2013: HPV at a crossroads—30 years of research and practice, 3–6 November 2013, Florence.

  72. Palefsky JM, Giuliano AR, Goldstone S, et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N Engl J Med. 2011;365(17):1576–85.

    CAS  PubMed  Google Scholar 

  73. Kjaer SK, Sigurdsson K, Iversen OE, et al. A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer Prev Res (Phila). 2009;2(10):868–78.

    PubMed  Google Scholar 

  74. Nygard M, Kruger Kjaer S, Dillner J, et al. Long-term effectiveness and immunogenicitity of Gardasil in the Nordic countries (abstract no. OC 6-3). In: EUROGIN 2013: HPV at a crossroads—30 years of research and practice, 3–6 November 2013, Florence.

  75. European Medicines Agency. CHMP variation assessment report: gardasil type II variation. 2010. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000703/WC500096580.pdf. Accessed 20 June 2013.

  76. Joura EA, Leodolter S, Hernandez-Avila M, et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet. 2007;369(9574):1693–702.

    CAS  PubMed  Google Scholar 

  77. The FUTURE II Study Group. Prophylactic efficacy of a quadrivalent human papillomavirus (HPV) vaccine in women with virological evidence of HPV infection. J Infect Dis. 2007;196(10):1438–46.

    Google Scholar 

  78. Olsson SE, Kjaer SK, Sigurdsson K, et al. Evaluation of quadrivalent HPV 6/11/16/18 vaccine efficacy against cervical and anogenital disease in subjects with serological evidence of prior vaccine type HPV infection. Hum Vaccin. 2009;5(10):696–704.

    CAS  PubMed  Google Scholar 

  79. Joura EA, Garland SM, Paavonen J, et al. Effect of the human papillomavirus (HPV) quadrivalent vaccine in a subgroup of women with cervical and vulvar disease: retrospective pooled analysis of trial data. BMJ. 2012;344:e1401.

    PubMed Central  PubMed  Google Scholar 

  80. Kang WD, Choi HS, Kim SM. Is vaccination with quadrivalent HPV vaccine after loop electrosurgical excision procedure effective in preventing recurrence in patients with high-grade cervical intraepithelial neoplasia (CIN2–3)? Gynecol Oncol. 2013;130(2):264–8.

    CAS  PubMed  Google Scholar 

  81. Barr E, Gause CK, Bautista OM, et al. Impact of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, 18) L1 virus-like particle vaccine in a sexually active population of North American women. Am J Obstet Gynecol. 2008;198(3):261 e1–11.

  82. Majewski S, Bosch FX, Dillner J, et al. The impact of a quadrivalent human papillomavirus (types 6, 11, 16, 18) virus-like particle vaccine in European women aged 16 to 24. J Eur Acad Dermatol Venereol. 2009;23(10):1147–55.

    CAS  PubMed  Google Scholar 

  83. Perez G, Lazcano-Ponce E, Hernandez-Avila M, et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) L1 virus-like-particle vaccine in Latin American women. Int J Cancer. 2008;122(6):1311–8.

    CAS  PubMed  Google Scholar 

  84. Clark LR, Myers ER, Huh W, et al. Clinical trial experience with prophylactic human papillomavirus 6/11/16/18 vaccine in young black women. J Adolesc Health. 2013;52(3):322–9.

    PubMed  Google Scholar 

  85. Brown DR, Kjaer SK, Sigurdsson K, et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16–26 years. J Infect Dis. 2009;199(7):926–35.

    PubMed  Google Scholar 

  86. Wheeler CM, Kjaer SK, Sigurdsson K, et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16–26 years. J Infect Dis. 2009;199(7):936–44.

    PubMed  Google Scholar 

  87. Arnheim-Dahlstrom L, Pasternak B, Svanstrom H, et al. Autoimmune, neurological, and venous thromboembolic adverse events after immunisation of adolescent girls with quadrivalent human papillomavirus vaccine in Denmark and Sweden: cohort study. BMJ. 2013;347:f5906.

    PubMed Central  PubMed  Google Scholar 

  88. Borja-Hart NL, Benavides S, Christensen C. Human papillomavirus vaccine safety in pediatric patients: an evaluation of the vaccine adverse event reporting system. Ann Pharmacother. 2009;43(2):356–9.

    PubMed  Google Scholar 

  89. Brotherton JM, Gold MS, Kemp AS, et al. Anaphylaxis following quadrivalent human papillomavirus vaccination. CMAJ. 2008;179(6):525–33.

    PubMed Central  PubMed  Google Scholar 

  90. Centers for Disease Control and Prevention. Human papillomavirus vaccination coverage among adolescent girls, 2007–2012, and postlicensure vaccine safety monitoring, 2006–2013: United States. MMWR Morb Mortal Wkly Rep. 2013;62(29):591–5.

    Google Scholar 

  91. Chao C, Klein NP, Velicer CM, et al. Surveillance of autoimmune conditions following routine use of quadrivalent human papillomavirus vaccine. J Intern Med. 2012;271:193–203.

    CAS  PubMed  Google Scholar 

  92. Dana A, Buchanan KM, Goss MA, et al. Pregnancy outcomes from the pregnancy registry of a human papillomavirus type 6/11/16/18 vaccine. Obstet Gynecol. 2009;114(6):1170–8.

    PubMed  Google Scholar 

  93. Gee J, Naleway A, Shui I, et al. Monitoring the safety of quadrivalent human papillomavirus vaccine: findings from the vaccine safety datalink. Vaccine. 2011;29(46):8279–84.

    PubMed  Google Scholar 

  94. Grimaldi-Bensouda L, Guillemot D, Godeau B, et al. Autoimmune disorders and quadrivalent human papillomavirus vaccination of young female subjects. J Intern Med. 2013. doi:10.1111/joim.12155.

    PubMed  Google Scholar 

  95. Klein NP, Hansen J, Chao C, et al. Safety of quadrivalent human papillomavirus vaccine administered routinely to females. Arch Pediatr Adolesc Med. 2012;166(12):1140–8.

    PubMed  Google Scholar 

  96. Slade BA, Leidel L, Vellozzi C, et al. Postlicensure safety surveillance for quadrivalent human papillomavirus recombinant vaccine. JAMA. 2009;302(7):750–7.

    CAS  PubMed  Google Scholar 

  97. World Health Organization. Global advisory committee on vaccine safety, 12–13 June 2013: update on human papillomavirus vaccines. Wkly Epidemiol Rec. 2013;88(29):309–12.

    Google Scholar 

  98. Moreira ED Jr, Palefsky JM, Giuliano AR, et al. Safety and reactogenicity of a quadrivalent human papillomavirus (types 6, 11, 16, 18) L1 viral-like-particle vaccine in older adolescents and young adults. Hum Vaccin. 2011;7(7):768–75.

    PubMed Central  PubMed  Google Scholar 

  99. Block SL, Brown DR, Chatterjee A, et al. Clinical trial and post-licensure safety profile of a prophylactic human papillomavirus (types 6, 11, 16, and 18) l1 virus-like particle vaccine. Pediatr Infect Dis J. 2010;29(2):95–101.

    PubMed  Google Scholar 

  100. Garland SM, Ault KA, Gall SA, et al. Pregnancy and infant outcomes in the clinical trials of a human papillomavirus type 6/11/16/18 vaccine: a combined analysis of five randomized controlled trials. Obstet Gynecol. 2009;114(6):1179–88.

    PubMed  Google Scholar 

  101. Goss MA, Lievano F, Siminack M, et al. No adverse signals observed after exposure to human papillomavirus type 6/11/16/18 vaccine during pregnancy: 5 year pregnancy registry data (abstract no. SS 8-3). In: EUROGIN 2012: human papillomavirus, cervical and other human diseases, 8–11 July 2012, Prague.

  102. Ojha RP, Jackson BE, Tota JE, et al. Guillain–Barre syndrome following quadrivalent human papillomavirus vaccination among vaccine-eligible individuals in the United States. Hum Vaccin Immunother. 2014;10(1):232–7.

    PubMed  Google Scholar 

  103. Perricone C, Colafrancesco S, Mazor RD, et al. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: unveiling the pathogenic, clinical and diagnostic aspects. J Autoimmun. 2013;47:1–16.

    CAS  PubMed  Google Scholar 

  104. Colafrancesco S, Perricone C, Tomljenovic L, et al. Human papilloma virus vaccine and primary ovarian failure: another facet of the autoimmune/inflammatory syndrome induced by adjuvants. Am J Reprod Immunol. 2013;70(4):309–16.

    CAS  PubMed  Google Scholar 

  105. Lee SH. Detection of human papillomavirus (HPV) L1 gene DNA possibly bound to particulate aluminum adjuvant in the HPV vaccine Gardasil. J Inorg Biochem. 2012;117:85–92.

    CAS  PubMed  Google Scholar 

  106. World Health Organization. Global advisory committee on vaccine safety: statement on the continued safety of HPV vaccination—12 March. 2014. http://www.who.int/vaccine_safety/committee/topics/hpv/en/. Accessed 20 June 2014.

  107. European Medicines Agency. European Medicines Agency replies to concerns of Sane Vax Inc. 2011. http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2011/09/news_detail_001350.jsp&mid=WC0b01ac058004d5c1. Accessed 20 June 2014.

  108. Harris T, Williams DM, Fediurek J, et al. Adverse events following immunization in Ontario’s female school-based HPV program. Vaccine. 2014;32(9):1061–6.

    PubMed  Google Scholar 

  109. Kang LW, Crawford N, Tang ML, et al. Hypersensitivity reactions to human papillomavirus vaccine in Australian schoolgirls: retrospective cohort study. BMJ. 2008;337:a2642.

    PubMed  Google Scholar 

  110. World Health Organization. Global advisory committee on vaccine safety, 11–12 December 2013: human papillomavirus vaccines safety (HPV). Wkly Epidemiol Rec. 2014;89(7):58–60.

    Google Scholar 

  111. European Medicines Agency. PRAC recommendations on signals: adopted at the PRAC meeting of 7–10 April 2014. 2014. http://www.ema.europa.eu/docs/en_GB/document_library/Other/2014/04/WC500165809.pdf Accessed 20 June 2014.

  112. Siegrist CA, Lewis EM, Eskola J, et al. Human papilloma virus immunization in adolescent and young adults: a cohort study to illustrate what events might be mistaken for adverse reactions. Pediatr Infect Dis J. 2007;26(11):979–84.

    PubMed  Google Scholar 

  113. Clothier HJ, Lee KJ, Sundararajan V, et al. Human papillomavirus vaccine in boys: background rates of potential adverse events. Med J Aust. 2013;198(10):554–8.

    PubMed  Google Scholar 

  114. Annemans L, Remy V, Oyee J, et al. Cost-effectiveness evaluation of a quadrivalent human papillomavirus vaccine in Belgium. Pharmacoeconomics. 2009;27(3):231–45.

    PubMed  Google Scholar 

  115. Bergeron C, Largeron N, McAllister R, et al. Cost-effectiveness analysis of the introduction of a quadrivalent human papillomavirus vaccine in France. Int J Technol Assess Health Care. 2008;24(1):10–9.

    PubMed  Google Scholar 

  116. Brisson M, Laprise JF, Drolet M, et al. Comparative cost-effectiveness of the quadrivalent and bivalent human papillomavirus vaccines: a transmission-dynamic modeling study. Vaccine. 2013. doi:10.1016/j.vaccine.2013.06.064.

    Google Scholar 

  117. Brisson M, Van de Velde N, De Wals P, et al. The potential cost-effectiveness of prophylactic human papillomavirus vaccines in Canada. Vaccine. 2007;25(29):5399–408.

    PubMed  Google Scholar 

  118. Chesson HW, Ekwueme DU, Saraiya M, et al. Cost-effectiveness of human papillomavirus vaccination in the United States. Emerg Infect Dis. 2008;14(2):244–51.

    PubMed Central  PubMed  Google Scholar 

  119. Dasbach EJ, Insinga RP, Elbasha EH. The epidemiological and economic impact of a quadrivalent human papillomavirus vaccine (6/11/16/18) in the UK. BJOG. 2008;115(8):947–56.

    CAS  PubMed  Google Scholar 

  120. Dasbach EJ, Largeron N, Elbasha EH. Assessment of the cost-effectiveness of a quadrivalent HPV vaccine in Norway using a dynamic transmission model. Expert Rev Pharmacoecon Outcomes Res. 2008;8(5):491–500.

    PubMed  Google Scholar 

  121. Dasbach EJ, Nagy L, Brandtmuller A, et al. The cost effectiveness of a quadrivalent human papillomavirus vaccine (6/11/16/18) in Hungary. J Med Econ. 2010;13(1):110–8.

    PubMed  Google Scholar 

  122. Dee A, Howell F. A cost-utility analysis of adding a bivalent or quadrivalent HPV vaccine to the Irish cervical screening programme. Eur J Public Health. 2010;20(2):213–9.

    PubMed  Google Scholar 

  123. Demarteau N, Tang CH, Chen HC. Cost-effectiveness analysis of the bivalent compared with the quadrivalent human papillomavirus vaccines in Taiwan. Value Health. 2012;15:622–31.

    PubMed  Google Scholar 

  124. Kim JJ, Goldie SJ. Health and economic implications of HPV vaccination in the United States. N Engl J Med. 2008;359(8):821–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Kulasingam SL, Benard S, Barnabas RV, et al. Adding a quadrivalent human papillomavirus vaccine to the UK cervical cancer screening programme: a cost-effectiveness analysis. Cost Eff Resour Alloc. 2008. doi:10.1186/1478-7547-6-4.

    PubMed Central  PubMed  Google Scholar 

  126. Mennini FS, Giorgi Rossi P, Palazzo F, et al. Health and economic impact associated with a quadrivalent HPV vaccine in Italy. Gynecol Oncol. 2009;112(2):370–6.

  127. Szucs TD, Largeron N, Dedes KJ, et al. Cost-effectiveness analysis of adding a quadrivalent HPV vaccine to the cervical cancer screening programme in Switzerland. Curr Med Res Opin. 2008;24(5):1473–83.

    PubMed  Google Scholar 

  128. Reynales-Shigematsu LM, Rodrigues ER, Lazcano-Ponce E. Cost-effectiveness analysis of a quadrivalent human papilloma virus vaccine in Mexico. Arch Med Res. 2009;40(6):503–13.

    PubMed  Google Scholar 

  129. Favato G, Baio G, Capone A, et al. Novel health economic evaluation of a vaccination strategy to prevent HPV-related diseases: the BEST study. Med Care. 2012;50(12):1076–85.

    PubMed  Google Scholar 

  130. Kim JJ. Targeted human papillomavirus vaccination of men who have sex with men in the USA: a cost-effectiveness modelling analysis. Lancet Infect Dis. 2010;10(12):845–52.

    PubMed Central  PubMed  Google Scholar 

  131. Chesson HW, Ekwueme DU, Saraiya M, et al. The cost-effectiveness of male HPV vaccination in the United States. Vaccine. 2011;29(46):8443–50.

    PubMed  Google Scholar 

  132. Elbasha EH, Dasbach EJ. Impact of vaccinating boys and men against HPV in the United States. Vaccine. 2010;28(42):6858–67.

    PubMed  Google Scholar 

  133. Elbasha EH, Dasbach EJ, Insinga RP. Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis. 2007;13(1):28–41.

    PubMed Central  PubMed  Google Scholar 

  134. Insinga RP, Dasbach EJ, Elbasha EH, et al. Cost-effectiveness of quadrivalent human papillomavirus (HPV) vaccination in Mexico: a transmission dynamic model-based evaluation. Vaccine. 2007;26(1):128–39.

    PubMed  Google Scholar 

  135. Jit M, Choi YH, Edmunds WJ. Economic evaluation of human papillomavirus vaccination in the United Kingdom. BMJ. 2008;337:a769.

    PubMed Central  PubMed  Google Scholar 

  136. Kim JJ, Goldie SJ. Cost effectiveness analysis of including boys in a human papillomavirus vaccination programme in the United States. BMJ. 2009;339:b3884.

    PubMed Central  PubMed  Google Scholar 

  137. Olsen J, Jepsen MR. Human papillomavirus transmission and cost-effectiveness of introducing quadrivalent HPV vaccination in Denmark. Int J Technol Assess Health Care. 2010;26(2):183–91.

    PubMed  Google Scholar 

  138. Zechmeister I, Blasio BF, Garnett G, et al. Cost-effectiveness analysis of human papillomavirus-vaccination programs to prevent cervical cancer in Austria. Vaccine. 2009;27(37):5133–41.

    PubMed  Google Scholar 

  139. Taira AV, Neukermans CP, Sanders GD. Evaluating human papillomavirus vaccination programs. Emerg Infect Dis. 2004;10(11):1915–23.

    PubMed Central  PubMed  Google Scholar 

  140. Bresse X, Goergen C, Prager B, et al. Universal vaccination with the quadrivalent HPV vaccine in Austria: impact on virus circulation, public health and cost-effectiveness analysis. Expert Rev Pharmacoecon Outcomes Res. 2014;14(2):269–81.

    PubMed  Google Scholar 

  141. Burger EA, Sy S, Nygard M, et al. Prevention of HPV-related cancers in Norway: cost-effectiveness of expanding the HPV vaccination program to include pre-adolescent boys. PLoS One. 2014. doi:10.1371/journal.pone.0089974.

    Google Scholar 

  142. Jit M, Chapman R, Hughes O. Comparing bivalent and quadrivalent human papillomavirus vaccines: economic evaluation based on transmission model. BMJ. 2011. doi:10.1136/bmj.d5775.

    Google Scholar 

  143. US FDA. Gardasil (human papillomavirus quadrivalent [types 6, 11, 16, and 18] vaccine recombinant): US prescribing information. 2014. http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094042.htm. Accessed 8 April 2014.

  144. Bissett SL, Draper E, Myers RE, et al. Cross-neutralizing antibodies elicited by the Cervarix® human papillomavirus vaccine display a range of alpha-9 inter-type specificities. Vaccine. 2014;32(10):1139–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Bonanni P, Cohet C, Kjaer SK, et al. A summary of the post-licensure surveillance initiatives for GARDASIL/SILGARD. Vaccine. 2010;28(30):4719–30.

    PubMed  Google Scholar 

  146. Canfell K, Chesson H, Kulasingam SL, et al. Modeling preventative strategies against human papillomavirus-related disease in developed countries. Vaccine. 2012;30(Suppl 5):F157–67.

    PubMed Central  PubMed  Google Scholar 

  147. World Health Organization. Human papillomavirus vaccines: WHO position paper. Wkly Epidemiol Rec. 2009;84(15):118–31.

    Google Scholar 

  148. European Centre for Disease Prevention and Control. Introduction of HPV vaccines in European Union countries: an update. 2012. http://www.ecdc.europa.eu/en/publications/Publications/20120905_GUI_HPV_vaccine_update.pdf. Accessed 20 June 2014.

  149. Centers for Disease Control and Prevention. Quadrivalent human papillomavirus vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 2007;56(RR-2):1–24.

  150. European Cervical Cancer Association. HPV vaccination across Europe. 2009. http://www.ecca.info/fileadmin/user_upload/HPV_Vaccination/ECCA_HPV_Vaccination_April_2009.pdf. Accessed 20 June 2014.

  151. European Centre for Disease Prevention and Control. Vaccine schedule. 2014. http://vaccine-schedule.ecdc.europa.eu/Pages/Scheduler.aspx. Accessed 20 June 2014.

  152. Centers for Disease Control and Prevention. Recommendations on the use of quadrivalent human papillomavirus vaccine in males: Advisory Committee on Immunization Practices (ACIP), 2011. MMWR Morb Mortal Wkly Rep. 2011;60(50):1705–8.

    Google Scholar 

  153. Katz ML, Reiter PL, Heaner S, et al. Acceptance of the HPV vaccine among women, parents, community leaders, and healthcare providers in Ohio Appalachia. Vaccine. 2009;27(30):3945–52.

    PubMed Central  PubMed  Google Scholar 

  154. Barnack JL, Reddy DM, Swain C. Predictors of parents’ willingness to vaccinate for human papillomavirus and physicians’ intentions to recommend the vaccine. Womens Health Issues. 2010;20(1):28–34.

    PubMed  Google Scholar 

  155. Donovan B, Franklin N, Guy R, et al. Quadrivalent human papillomavirus vaccination and trends in genital warts in Australia: analysis of national sentinel surveillance data. Lancet Infect Dis. 2011;11(1):39–44.

    PubMed  Google Scholar 

  156. Moodley I, Tathiah N, Mubaiwa V, et al. High uptake of Gardasil vaccine among 9–12-year old schoolgirls participating in an HPV vaccination demonstration project in Kwazulu-Natal, South Africa. S Afr Med J. 2013;103(5):318–21.

    CAS  PubMed  Google Scholar 

  157. Binagwaho A, Wagner CM, Gatera M, et al. Achieving high coverage in Rwanda’s national human papillomavirus vaccination programme. Bull World Health Organ. 2012;90(8):623–8.

    PubMed Central  PubMed  Google Scholar 

  158. Singh Y, Shah A, Singh M, et al. Human papilloma virus vaccination in Nepal: an initial experience. Asian Pac J Cancer Prev. 2010;11(3):615–7.

    PubMed  Google Scholar 

  159. Ladner J, Besson M-H, Hampshire R, et al. Assessment of eight HPV vaccination programs implemented in lowest income countries. BMC Public Health. 2012;12:370.

    PubMed Central  PubMed  Google Scholar 

  160. Centers for Disease Control and Prevention. National and state vaccination coverage among adolescents aged 13–17 years: United States, 2012. MMWR Morb Mortal Wkly Rep. 2013;62(34):685–93.

    Google Scholar 

  161. Hirth JM, Tan A, Wilkinson GS, et al. Completion rates of the human papillomavirus vaccine for insured females and males in the United States, 2006–2010 (abstract). In: 59th annual scientific meeting of the Society for Gynecologic Investigation, 21–24 March 2012, San Diego.

  162. World Health Organization. Meeting of the strategic advisory group of experts on immunization, April 2014: conclusions and recommendations. Wkly Epidemiol Rec. 2014;89(21):221–36.

    Google Scholar 

  163. Centers for Disease Control and Prevention. CDC Wonder online VAERS database. 2013. http://wonder.cdc.gov/vaers.html. Accessed 8 April 2014.

  164. Tomljenovic L, Shaw CA. Too fast or not too fast: the FDA’s approval of Merck’s HPV vaccine Gardasil. J Law Med Ethics. 2012;40(3):673–81.

    PubMed  Google Scholar 

  165. HPV vaccine works against nine viral types. Cancer Discov. 2014;4(1):OF2.

Download references

Disclosure

The preparation of this review was not supported by any external funding. During the peer review process, the manufacturer of the agent under review was offered an opportunity to comment on this article. Changes resulting from comments received were made by the author on the basis of scientific and editorial merit. Paul McCormack is a salaried employee of Adis/Springer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. McCormack.

Additional information

The manuscript was reviewed by: R. Herrero, Prevention and Implementation Group, International Agency for Research on Cancer, Lyon, France; E.A. Joura, Department of Gynaecology and Obstetrics, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; S. Majewski, Department of Dermatology and Venereology, Center for Diagnostics and Treatment of Sexually Transmitted Diseases, Medical University in Warsaw, Warsaw, Poland; M. Petras, Preventative Medicine, Charles University in Prague—2nd Faculty of Medicine, Prague, Czech Republic; S.-E. Olsson, Karolinska Institute at Danderyd Hospital, Stockholm, Sweden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCormack, P.L. Quadrivalent Human Papillomavirus (Types 6, 11, 16, 18) Recombinant Vaccine (Gardasil®): A Review of Its Use in the Prevention of Premalignant Anogenital Lesions, Cervical and Anal Cancers, and Genital Warts. Drugs 74, 1253–1283 (2014). https://doi.org/10.1007/s40265-014-0255-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-014-0255-z

Keywords

Navigation