Skip to main content

Advertisement

Log in

Alterations of the Sphingolipid Pathway in Alzheimer’s Disease: New Biomarkers and Treatment Targets?

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The public health burden of Alzheimer disease (AD), the most common neurodegenerative disease, threatens to explode in the middle of this century. Current FDA-approved AD treatments (e.g. cholinesterase inhibitors, NMDA-receptor agonists) do not provide a “cure”, but rather a transient alleviation of symptoms for some individuals. Other available therapies are few and of limited effectiveness so additional avenues are needed. Sphingolipid metabolism is a dynamic process that modulates the formation of a number of bioactive metabolites, or second messengers critical in cellular signaling and apoptosis. In brain, the proper balance of sphingolipids is essential for normal neuronal function, as evidenced by a number of severe brain disorders that are the result of deficiencies in enzymes that control sphingolipid metabolism. Laboratory and animals studies suggest both direct and indirect mechanisms by which sphingolipids contribute to amyloid-beta production and Alzheimer pathogenesis but few studies have translated these findings to humans. Building on the laboratory and animal evidence demonstrating the importance of sphingolipid metabolism in AD, this review highlights relevant translational research incorporating and expanding basic findings to humans. A brief biological overview of sphingolipids (sphingomyelins, ceramides, and sulfatides) in AD is first described, followed by a review of human studies including post-mortem studies, clinical and epidemiological studies. Lastly, the potential role of peripheral ceramides in AD pathogenesis is discussed, as well as the possible use of sphingolipids as biomarkers for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ariga, T., McDonald, M. P., & Yu, R. K. (2008). Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease–a review. Journal of Lipid Research, 49, 1157–1175.

    Article  CAS  PubMed  Google Scholar 

  • Bandaru, V. V., Troncoso, J., Wheeler, D., Pletnikova, O., Wang, J., Conant, K., et al. (2009). ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer’s but not normal brain. Neurobiology of Aging, 30, 591–599.

    Article  CAS  PubMed  Google Scholar 

  • Berg, L., McKeel, D. W., Jr., Miller, J. P., Storandt, M., Rubin, E. H., Morris, J. C., et al. (1998). Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: Relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Archives of Neurology, 55, 326–335.

    Article  CAS  PubMed  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.

    Article  CAS  PubMed  Google Scholar 

  • Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., et al. (2004). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. PNAS, 101, 2070–2075.

    Article  CAS  PubMed  Google Scholar 

  • Cutler, R. G., Pedersen, W. A., Camandola, S., Rothstein, J. D., & Mattson, M. P. (2002). Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Annals of Neurology, 52, 448–457.

    Article  CAS  PubMed  Google Scholar 

  • DeMattos, R. B., Brendza, R. P., Heuser, J. E., Kierson, M., Cirrito, J. R., Fryer, J., et al. (2001). Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochemistry International, 39, 415–425.

    Article  CAS  PubMed  Google Scholar 

  • Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6, 734–746.

    Article  PubMed  Google Scholar 

  • Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., et al. (2005). Global prevalence of dementia: A Delphi consensus study. Lancet, 366, 2112–2117.

    Article  PubMed  Google Scholar 

  • Fillit, H. M. (2000). The pharmacoeconomics of Alzheimer’s disease. The American Journal of Managed Care, 6, S1139–S1144.

    CAS  PubMed  Google Scholar 

  • France-Lanord, V., Brugg, B., Michel, P. P., Agid, Y., & Ruberg, M. (1997). Mitochondrial free radical signal in ceramide-dependent apoptosis: A putative mechanism for neuronal death in Parkinson’s disease. Journal of Neurochemistry, 69, 1612–1621.

    Article  CAS  PubMed  Google Scholar 

  • Frank, R., & Hargreaves, R. (2003). Clinical biomarkers in drug discovery and development. Nature Reviews, 2, 566–580.

    Article  CAS  PubMed  Google Scholar 

  • Grimm, M. O., Grimm, H. S., Patzold, A. J., Zinser, E. G., Halonen, R., Duering, M., et al. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nature Cell Biology, 7, 1118–1123.

    Article  CAS  PubMed  Google Scholar 

  • Growdon, J. H., Selkoe, D. J., Roses, A., et al. (1998). Consensus report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer’s Disease”. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Neurobiology of Aging, 19, 109–116.

    Article  Google Scholar 

  • Gulbins, E., & Kolesnick, R. (2003). Raft ceramide in molecular medicine. Oncogene, 22, 7070–7077.

    Article  CAS  PubMed  Google Scholar 

  • Han, X. (2005). Lipid alterations in the earliest clinically recognizable stage of Alzheimer’s disease: Implication of the role of lipids in the pathogenesis of Alzheimer’s disease. Current Alzheimer Research, 2, 65–77.

    Article  CAS  PubMed  Google Scholar 

  • Han, X., Cheng, H., Fryer, J. D., Fagan, A. M., & Holtzman, D. M. (2003a). Novel role for apolipoprotein E in the central nervous system. Modulation of sulfatide content. The Journal of Biological Chemistry, 278, 8043–8051.

    Article  CAS  PubMed  Google Scholar 

  • Han, X., Fagan, A. M., Cheng, H., Morris, J. C., Xiong, C., & Holtzman, D. M. (2003b). Cerebrospinal fluid sulfatide is decreased in subjects with incipient dementia. Annals of Neurology, 54, 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Han, X., Holtzman, D., McKeel, D. W., Jr., Kelley, J., & Morris, J. C. (2002). Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: Potential role in disease pathogenesis. Journal of Neurochemistry, 82, 809–818.

    Article  CAS  PubMed  Google Scholar 

  • Haughey, N. J., Cutler, R. G., Tamara, A., McArthur, J. C., Vargas, D. L., Pardo, C. A., et al. (2004). Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Annals of Neurology, 55, 257–267.

    Article  CAS  PubMed  Google Scholar 

  • He, X., Huang, Y., Li, B., Gong, C. X., & Schuchman, E. H. (2010). Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiology of Aging, 31(3), 398–408.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, L. E., Scherr, P. A., Bienias, J. L., Bennett, D. A., & Evans, D. A. (2003). Alzheimer disease in the US population: Prevalence estimates using the 2000 census. Archives of Neurology, 60, 1119–1122.

    Article  PubMed  Google Scholar 

  • Hofman, A., Ott, A., Breteler, M. M., Bots, M. L., Slooter, A. J., van Harskamp, F., et al. (1997). Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet, 349, 151–154.

    Article  CAS  PubMed  Google Scholar 

  • Holland, W. L., & Summers, S. A. (2008). Sphingolipids, insulin resistance, and metabolic disease: New insights from in vivo manipulation of sphingolipid metabolism. Endocrine Reviews, 29, 381–402.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, C., Boche, D., Wilkinson, D., Yadegarfar, G., Hopkins, V., Bayer, A., et al. (2008). Long-term effects of Abeta42 immunisation in Alzheimer’s disease: Follow-up of a randomised, placebo-controlled phase I trial. Lancet, 372, 216–223.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Tanimukai, H., Liu, F., Iqbal, K., Grundke-Iqbal, I., & Gong, C. X. (2004). Elevation of the level and activity of acid ceramidase in Alzheimer’s disease brain. European Journal of Neuroscience, 20, 3489–3497.

    Article  PubMed  Google Scholar 

  • Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 266–572.

    Article  Google Scholar 

  • Hur, J. Y., Welander, H., Behbahani, H., Aoki, M., Franberg, J., Winblad, B., et al. (2008). Active gamma-secretase is localized to detergent-resistant membranes in human brain. FEBS Journal, 275, 1174–1187.

    Article  CAS  PubMed  Google Scholar 

  • Ichi, I., Nakahara, K., Miyashita, Y., Hidaka, A., Kutsukake, S., Inoue, K., et al. (2006). Association of ceramides in human plasma with risk factors of atherosclerosis. Lipids, 41, 859–863.

    Article  CAS  PubMed  Google Scholar 

  • Jana, A., & Pahan, K. (2004). Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. Journal of Biological Chemistry, 279, 51451–51459.

    Article  CAS  PubMed  Google Scholar 

  • Jorm, A. F., & Jolley, D. (1998). The incidence of dementia: A meta-analysis. Neurology, 51, 728–733.

    CAS  PubMed  Google Scholar 

  • Kalvodova, L., Kahya, N., Schwille, P., Ehehalt, R., Verkade, P., Drechsel, D., et al. (2005). Lipids as modulators of proteolytic activity of BACE: Involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. The Journal of Biological Chemistry, 280, 36815–36823.

    Article  CAS  PubMed  Google Scholar 

  • Katsel, P., Li, C., & Haroutunian, V. (2007). Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: A shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochemical Research, 32, 845–856.

    Article  CAS  PubMed  Google Scholar 

  • Koch, S., Donarski, N., Goetze, K., Kreckel, M., Stuerenburg, H. J., Buhmann, C., et al. (2001). Characterization of four lipoprotein classes in human cerebrospinal fluid. Journal of Lipid Research, 42, 1143–1151.

    CAS  PubMed  Google Scholar 

  • Lee, J. T., Xu, J., Lee, J. M., Ku, G., Han, X., Yang, D. I., et al. (2004). Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. Journal of Cell Biology, 164, 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Lomnitski, L., Oron, L., Sklan, D., & Michaelson, D. M. (1999). Distinct alterations in phospholipid metabolism in brains of apolipoprotein E-deficient mice. Journal of Neuroscience Research, 58, 586–592.

    Article  CAS  PubMed  Google Scholar 

  • Lyketsos, C. G., Szekely, C. A., Mielke, M. M., Rosenberg, P. B., & Zandi, P. P. (2008). Developing new treatments for Alzheimer’s disease: The who, what, when, and how of biomarker-guided therapies. International psychogeriatrics/IPA, 20, 871–889.

    PubMed  Google Scholar 

  • Mahley, R. W. (1988). Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science, 240, 622–630.

    Article  CAS  PubMed  Google Scholar 

  • Marinier, A., Martel, A., Banville, J., Bachand, C., Remillard, R., Lapointe, P., et al. (1997). Sulfated galactocerebrosides as potential antiinflammatory agents. Journal of Medicinal Chemistry, 40, 3234–3247.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. P., Cutler, R. G., & Jo, D. G. (2005). Alzheimer peptides perturb lipid-regulating enzymes. Nature Cell Biology, 7, 1045–1047.

    Article  CAS  PubMed  Google Scholar 

  • Mattsson, N., Zetterberg, H., Hansson, O., Andreasen, N., Parnetti, L., Jonsson, M., et al. (2009). CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA, 302, 385–393.

    Article  CAS  PubMed  Google Scholar 

  • Mayeux, R. (2003). Epidemiology of neurodegeneration. Annual Review of Neuroscience, 26, 81–104.

    Article  CAS  PubMed  Google Scholar 

  • Merched, A., Blain, H., Visvikis, S., Herbeth, B., Jeandel, C., & Siest, G. (1997). Cerebrospinal fluid apolipoprotein E level is increased in late-onset Alzheimer’s disease. Journal of the Neurological Sciences, 145, 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Mielke, M. M., Bandaru, V. V., Haughey, N. J., Rabins, P. V., Lyketsos, C. G., & Carlson, M. C. (2010a). Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiology of Aging, 31, 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Mielke, M. M., Bandaru, V. V. R., Haughey, N. J., Schech, S., Chu, M., Albert, M., et al. (2010b). Plasma ceramides are altered early in the course of Alzheimers disease. Alzheimer’s & Dementia, in press.

  • Mielke, M. M., & Lyketsos, C. G. (2006). Lipids and the pathogenesis of Alzheimer’s disease: Is there a link? International Review of Psychiatry, 18, 173–186.

    Article  PubMed  Google Scholar 

  • Mielke, M. M., Rosenberg, P. B., Tschanz, J., Cook, L., Corcoran, C., Hayden, K. M., et al. (2007). Vascular factors predict rate of progression in Alzheimer disease. Neurology, 69, 1850–1858.

    Article  CAS  PubMed  Google Scholar 

  • Nathan, B. P., Bellosta, S., Sanan, D. A., Weisgraber, K. H., Mahley, R. W., & Pitas, R. E. (1994). Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science, 264, 850–852.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, J. C., Jiang, X. C., Tabas, I., Tall, A., & Shea, S. (2006). Plasma sphingomyelin and subclinical atherosclerosis: Findings from the multi-ethnic study of atherosclerosis. American Journal of Epidemiology, 163, 903–912.

    Article  PubMed  Google Scholar 

  • Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A., Hofman, A., & Breteler, M. M. (1999). Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology, 53, 1937–1942.

    CAS  PubMed  Google Scholar 

  • Pettegrew, J. W., Panchalingam, K., Hamilton, R. L., & McClure, R. J. (2001). Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochemical Research, 26, 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Pitas, R. E., Boyles, J. K., Lee, S. H., Hui, D., & Weisgraber, K. H. (1987). Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E(LDL) receptors in the brain. The Journal of Biological Chemistry, 262, 14352–14360.

    CAS  PubMed  Google Scholar 

  • Pitto, M., Raimondo, F., Zoia, C., Brighina, L., Ferrarese, C., & Masserini, M. (2005). Enhanced GM1 ganglioside catabolism in cultured fibroblasts from Alzheimer patients. Neurobiology of Aging, 26, 833–838.

    Article  CAS  PubMed  Google Scholar 

  • Puglielli, L., Ellis, B. C., Saunders, A. J., & Kovacs, D. M. (2003). Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. The Journal of Biological Chemistry, 278, 19777–19783.

    Article  CAS  PubMed  Google Scholar 

  • Satoi, H., Tomimoto, H., Ohtani, R., Kitano, T., Kondo, T., Watanabe, M., et al. (2005). Astroglial expression of ceramide in Alzheimer’s disease brains: A role during neuronal apoptosis. Neuroscience, 130, 657–666.

    Article  CAS  PubMed  Google Scholar 

  • Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H., Wekstein, D. R., & Markesbery, W. R. (1996). Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life. Findings from the Nun Study. JAMA, 275, 528–532.

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., et al. (1993). Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. PNAS, 90, 1977–1981.

    Article  CAS  PubMed  Google Scholar 

  • Weisgraber, K. H., & Mahley, R. W. (1996). Human apolipoprotein E: The Alzheimer’s disease connection. FASEB J, 10, 1485–1494.

    CAS  PubMed  Google Scholar 

  • Xu, W. L., Qiu, C. X., Wahlin, A., Winblad, B., & Fratiglioni, L. (2004). Diabetes mellitus and risk of dementia in the Kungsholmen project: A 6-year follow-up study. Neurology, 63, 1181–1186.

    CAS  PubMed  Google Scholar 

  • Yanagisawa, K. (2007). Role of gangliosides in Alzheimer’s disease. Biochimica et Biophysica Acta, 1768, 1943–1951.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Institute on Aging (R21AG028754 and P50AG005146), the National Institute of Neurological Disorders and Stroke (R21NS060271-01) and a grant from the George and Cynthia Mitchell Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle M. Mielke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, M.M., Lyketsos, C.G. Alterations of the Sphingolipid Pathway in Alzheimer’s Disease: New Biomarkers and Treatment Targets?. Neuromol Med 12, 331–340 (2010). https://doi.org/10.1007/s12017-010-8121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-010-8121-y

Keywords

Navigation