Skip to main content
Log in

Association of ceramides in human plasma with risk factors of atherosclerosis

  • Articles
  • Published:
Lipids

Abstract

Atherosclerosis is a multifactorial disorder. Recent studies indicate that the plasma level of sphingomyelin, which yields ceramide, correlates with the risk of coronary heart disease. Therefore, ceramide, a well-known lipid causing apoptosis in various cell types, may contribute to atherogenesis. We examined the relationship between ceramide concentration and risk factors of atherosclerosis in normal human plasma using electrospray tandem mass spectrometry (LC-MS/MS). Major ceramides in human plasma were C24∶0 and C24∶1. The ceramide concentration showed a significant positive correlation with total cholesterol (TC) and triglycerides (TG). In addition, plasma ceramide level increased drastically at a high level of LDL cholesterol (more than 170 mg/dL). Our previous studies demonstrated that the sum of fragmented and conjugated apolipoprotein B-100 proteins (B-ox), which were products of a radical reaction of LDL as well as plasma, was a reliable index of atherosclerosis. B-ox showed a significant positive correlation with the plasma ceramide level. Based on these results, we propose that the ceramide level in human plasma is a risk factor at the early stages of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

apoB:

apolipoprotein B-100

MT:

intima-media thickness of the carotid artery

oxLDL:

oxidized LDL

SM:

sphingomyelin

SMase:

sphingomyelinase

SPT:

serine palmitoyl-CoA transferase

TC:

total cholesterol

TG:

triglyceride

References

  1. Hannun, Y.A., and Obeid, L.M. (2002) The Ceramide-Centric Universe of Lipid-Mediated Cell Regulation: Stress Encounters of the Lipid Kind, J. Biol. Chem. 277, 25847–25850.

    Article  PubMed  CAS  Google Scholar 

  2. Merrill, A.H., Jr. (2002) De Novo Sphingolipid Biosynthesis: A Necessary, But Dangerous, Pathway, J. Biol. Chem. 277, 25843–25846.

    Article  PubMed  CAS  Google Scholar 

  3. Olivera, A., and Spiegel, S. (2001) Sphingosine Kinase: A Mediator of Vital Cellular Functions, Prostaglandins, Other Lipid Mediat. 64, 123–134.

    Article  CAS  Google Scholar 

  4. Kolesnick, R. (1992) Ceramide: A Novel Second Messenger, Trends Cell Biol. 2, 232–6.

    Article  PubMed  CAS  Google Scholar 

  5. Merrill, A.H., and Jones, D.D. (1990) At Update of the Enzymology and Regulation of Sphingomyelin Metabolism, Biochim. Biophys. Acta. 1044, 1–12.

    PubMed  CAS  Google Scholar 

  6. Jiang, X.-C., Paultre, F., Pearson, T.A., Reed, R.G., Francis, C.K., Lin, M., Berglund, L., and Tall, A.R. (2000) Plasma Sphingmyelin Level as a Risk Factor for Coronary Artery Disease, Arterioscler. Thromb. Vasc. Biol. 20, 2614–2618.

    PubMed  CAS  Google Scholar 

  7. Noel, C., Marcel, Y.L., and Davignon, J. (1972) Plasma Phospholipids in the Different Types of Primary Hyperlipoproteinemia, J. Lab. Clin. Med. 79, 611–612.

    PubMed  CAS  Google Scholar 

  8. Nelson, J.C., Jiang, X.C., Tabas, I., Tall, A., and Shea, S. (2006) Plasma Sphingomyelin and Subclinical Atherosclerosis: Findings from the Multi-Ethnic Study of Atherosclerosis, Am. J. Epidemiol. 163, 903–912.

    Article  PubMed  Google Scholar 

  9. Park, T.S., Panek, R.L., Mueller, S.B., Hanselman, J.C., Rosebury, W.S., Robertson, A.W., Kindt, E.K., Homan, R. Karathanasis, S.K., and Rekhter, M.D. (2004) Modulation of Lipoprotein Metabolism by Inhibition of Sphingomyelin Synthesis in ApoE Knockout Mice, Circulation 110, 3465–3471.

    Article  PubMed  CAS  Google Scholar 

  10. Hojjati, M.R., Li, Z., Zhou, H., Tang, S., Huan, C., Ooi, E., Lu, S., and Jiang, X.C. (2005) Effect of Myriocin on Plasma Sphingolipid Metabolism and Atherosclerosis in Apoe-Deficient Mice, J. Biol. Chem. 280, 10284–10289.

    Article  PubMed  CAS  Google Scholar 

  11. Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for 1990s, Nature 362, 801–809.

    Article  PubMed  CAS  Google Scholar 

  12. Havel, R.J. (1989) Biology of Cholesterol Lipoproteins and Atherosclerosis. Clin. Exp. Hypertens. 11, 887–900.

    CAS  Google Scholar 

  13. Schissel, S.L., Tweedie-Hardman, J., Rapp, J.H., Graham, G., Williams, K.J., and Tabas, I. (1996) Rabbit Aorta and Human Atherosclerotic Lesions Hydrolyze the Sphingomyelin of Retained Low-Density Lipoprotein, J. Clin. Invest. 98, 1455–1464.

    Article  PubMed  CAS  Google Scholar 

  14. Xu, X.-X., and Tabas, I. (1991) Sphingomyelinase Enhances Low Density Lipoprotein Uptake and Ability to Induce Cholesteryl Ester Accumulation in Macrophages, J. Biol. Chem. 266, 24849–24858.

    PubMed  CAS  Google Scholar 

  15. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., and Witztum, J.L. (1989) Beyond Cholesterol: Modifications of Low Density Lipoprotein that Increase its Atherogenicity, N. Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  16. Kodama, T., Freeman, M., Rohrer, L., Zabrecky, J., Matsudaira, P., and Krieger, M. (1990) Type I Macrophage Scavenger Receptor Contains a-Helical and Collagen-Like Coiled Coil, Nature 343, 531–535.

    Article  PubMed  CAS  Google Scholar 

  17. Matsumoto, A., Naito, M., Itakura, H., Ikemoto, S., Asaoka, H., Hayakawa, I., Kanamori, H., Aburatani, H., Takaku, F., Suzuki, H., Kobari, Y., Miyai, T., Takahashi, K., Cohen, E.H., Wydro, R., Housman, D.E., and Kodama, T. (1990) Human Macrophage Scavenger Recepters: Primary Structure, Expression, and Localization in Atherosclerotic Lesions, Proc. Natl. Acad. Sci. USA 87, 9133–9137.

    Article  PubMed  CAS  Google Scholar 

  18. Miller, Y.I., Felikman, Y., and Shakalai, N. (1995) The Involvement of Low-Density Lipoprotein in Hemin Transport Potentiates Peroxidative Damage, Biochim. Biophys. Acta. 1272, 119–127.

    PubMed  Google Scholar 

  19. Fong, L.G., Parthasarathy, S., Witztum, J.L., and Steinberg, D. (1987) Nonenzymatic Oxidative Cleavage of Peptide Bonds in Apoprotein B-100, J. Lipid Res. 28, 1466–1477.

    PubMed  CAS  Google Scholar 

  20. Noguchi, N., Gotoh, N., and Niki, E. (1994) Effect of Ebselen and Probucol on Oxidative Modifications of Lipid and Protein of Low Density Lipoprotein Induced by Free Radicals, Biochim. Biophys. Acta. 1213, 176–182.

    PubMed  CAS  Google Scholar 

  21. Hashimoto, R., Narita, S., Yamada, Y., Tanaka, K., and Kojo, S. (2000) Unusually High Reactivity of Apolipoprotein B-100 Among Proteins to Radical Reactions Induced in Human Plasma, Biochem. Biophys. Acta. 1483, 236–240.

    PubMed  CAS  Google Scholar 

  22. Tanaka, K., Iguchi, H., Taketani, S., Nakata, R., Tokumaru, S., Sugimoto, T., and Kojo, S. (1999) Facile Degradation of Apolipoprotein B by Radical Reactions and the Presence of Cleaved Proteins in Serum, J. Biochem. 125, 173–176.

    PubMed  CAS  Google Scholar 

  23. Hashimoto, R., Matsukawa, N., Nariyama, Y., Ogiri, Y., Hamagawa, E., Tanaka, K., Usui, Y., Nakano, S., Maruyama, T., Kyotani, S., Tsushima, M., and Kojo, S. (2002) Evaluation of Apolipoprotein B-100 Fragmentation and Cross-Link in the Serum as an Index of Atherosclerosis, Biochim. Biophys. Acta. 1584, 123–128.

    PubMed  CAS  Google Scholar 

  24. Kojo, S. (2004) Vitamin C: Basic Metabolism and its Function as an Index of Oxdative Stress, Curr. Med. Chem. 11, 1041–1064.

    Article  PubMed  CAS  Google Scholar 

  25. Yamada, Y., Kajiwara, K., Yano, M., Kishida, E., Masuzawa, Y., and Kojo, S. (2001) Increase of Ceramides and its Inhibition by Catalase During Chemically Induced Apoptosis of HL-60 Cells Determined by Electrospray Ionization Tandem Mass Spectrometry, Biochim. Biophys. Acta, 1532, 115–120.

    PubMed  CAS  Google Scholar 

  26. Yamaguchi, M., Miyashita, Y., Kumagai, Y., and Kojo, S. (2004) Change in Liver and Plasma Ceramides During D-Galac-tosamine-Induced Acute Hepatic Injury by LC-MS/MS, Bioorg. Med. Chem. Lett. 14, 4061–4064.

    Article  PubMed  CAS  Google Scholar 

  27. Mano, N., Oda, Y., Yamada, K., Asakawa, N., and Katayama, K. (1997) Simultaneous Quantitative Determination Method for Sphingolipid Metabolites by Liquid Chromatography/Ionspray Ionization Tandem Mass Spectrometry, Biochim. Biophys. Acta. 244, 291–300.

    CAS  Google Scholar 

  28. Gu, M., Kerwin, J.L., Watts, J.D., and Aebersold, R. (1997) Ceramide Profiling of Complex Lipid Mixtures by Electrospray Ionization Mass Spectrometry, Biochim. Biophys. Acta. 244, 347–356.

    CAS  Google Scholar 

  29. Laemmli, U.K. (1970) Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  30. Drobnik, W., Liebisch, G., Audebert, F.X., Frohlich, D., Gluck, T., Vogel, P., Rothe, G., and Schmitz, G. (2003) Plasma Ceramide and Lysophosphatidylcholine Inversely Correlate with Mortality in Sepsis Patients, J. Lipid Res. 44, 754–761.

    Article  PubMed  CAS  Google Scholar 

  31. Gorska, M., Dobrzyn, A., Zendzian-Piotrowska, M., and Namiot, Z. (2002) Concentration and Composition of Free Ceramides in Human Plasma, Horm. Metab. Res. 34, 466–468.

    Article  PubMed  CAS  Google Scholar 

  32. Myher, J.J., Kuksis, A., Breckenridge, W.C., and Little, J.A. (1981) Differential Distribution of Sphingomyelins Among Plasma Lipoprotein Classes, Can. J. Biochem. 59, 626–636.

    Article  PubMed  CAS  Google Scholar 

  33. Myher, J.J., Kuksis, A., Shepherd, J., Packard, C.J., Morrisett J.D., Taunton, O.D., and Gotto, A.M. (1981) Effect of Saturated and Unsaturated Fat Diets on Molecular Species of Phosphatidylcholine and Sphingomyelin of Human Plasma Lipoproteins. Biochim. Biophys. Acta. 666, 110–119.

    PubMed  CAS  Google Scholar 

  34. Huwiler, A., Kolter, T., Pfeilschifter, J., and Sandhoff, K. (2000) Physiology and Pathophysiology of Sphingolipid Metabolism and Signaling, Biochim. Biophys. Acta. 1485, 63–99.

    PubMed  CAS  Google Scholar 

  35. Levade, T., Auge, N., Veldman, R.J., Cuvillier, O., Negre-Salvayre, A., and Salvayre, R. (2001) Sphingolipid Mediators in Cardiovascular Cell Biology and Pathology, Circ. Res. 89, 957–968.

    PubMed  CAS  Google Scholar 

  36. Siess, W., Essler, M., and Brandl, R. (2000) Lysophosphatidic Acid and Shingosine 1-Phosphate: Two Lipid Villains Provoking Cardiovascular Disease? IUBMB Life 49, 167–171.

    Article  PubMed  CAS  Google Scholar 

  37. Tabas, I., Li, Y., Brocia, R.W., Xu, S.W., Swenson, T.L., and Williams, K.J. (1993) Lipoprotein Lipase and Sphingomyelinase Synergistically Enhance the Association of Atherogenic Lipoprotein (A) Retention and Macrophage Foam Cell Formation, J. Biol. Chem. 268, 20419–20432.

    PubMed  CAS  Google Scholar 

  38. Escargueil-Blanc, I., Meilhac, O., Pieraggi, M.T., Arnal, J.F., Salvayre, R., and Negre-Salvayre, A. (1997) Oxidized LDLs Induce Massive Apoptosis of Cultured Human Endothelial Cells Through a Calcium-Dependent Pathway: Prevention by Aurintricarboxylic Acid, Arterioscler. Thromb. Vasc. Biol. 17, 331–339.

    PubMed  CAS  Google Scholar 

  39. Escargueil-Blanc, I., Salvayre, R., and Negre-Salvayre, A. (1994) Necrosis and Apoptosis Induced by Oxidized Low Density Lipoproteins Occur Through Two Calcium-Dependent Pathways in Lymphoblastoid Cells, FASEB J. 8, 1075–1080.

    PubMed  CAS  Google Scholar 

  40. Auge, N., Andrieu, N., Nègre-Salvayre, A., Thiers, J.C., Levade, T., and Salvayre R. (1996) The Sphingomyelin-Ceramide Signaling Pathway Is Involved in Oxidized Low Density Lipoprotein-Induced Cell Proliferation, J. Biol. Chem. 271, 19251–19255.

    Article  PubMed  CAS  Google Scholar 

  41. Bedwell, S., Dean, R.T., and Jessup, W. (1989) The Action of Defined Oxygen-Centred Free Radicals on Human Low-Density Lipoprotein, Biochem. J. 262, 707–712.

    PubMed  CAS  Google Scholar 

  42. Heinecke, J.W., Kawamura, M., Suzuki, L., and Chait, A. (1993) Oxidation of Low Density Lipoprotein by Thiols: Superoxide-Dependent and-Independent Mechanisms, J. Lipid Res. 34, 2051–2061.

    PubMed  CAS  Google Scholar 

  43. Kawabe, Y., Cynshi, O., Takashima, Y., Suzuki, T., Ohba, Y., and Kodama, T. (1994) Oxidation-Induced Aggregation of Rabbit Low-Density Lipoprotein by azo Initiator, Arch. Biochem. Biophys. 310, 489–496.

    Article  PubMed  CAS  Google Scholar 

  44. Meyer, D.F., Mayans, M.O., Groot, P.H., Suckling, K.E., Bruckdorfer, K.R., and Perkins, S.J. (1995) Time-Course Studies by Neutron Solution Scattering and Biochemical Assays of the Aggregation of Human Low-Density Lipoprotein During Cu(2+)-Induced Oxidation, Biochem. J. 310, 417–426.

    PubMed  CAS  Google Scholar 

  45. Auge, N., Maupas-Schwalm, F., Elbaz, M., Thiers, J.C., Waysbort, A., Itohara, S., Krell, H.W., Salvayre, R., and Negre-Salvayre, A. (2004) Role for Matrix Metalloproteinase-2 in Oxidized Low-Density Lipoprotein-Induced Activation of the Sphingomyeline/Ceramide Pathway and Smooth Muscle Cell Proliferation, Circulation 110, 571–588.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Shosuke Kojo.

About this article

Cite this article

Ichi, I., Nakahara, K., Miyashita, Y. et al. Association of ceramides in human plasma with risk factors of atherosclerosis. Lipids 41, 859–863 (2006). https://doi.org/10.1007/s11745-006-5041-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5041-6

Keywords

Navigation