Skip to main content
Log in

Effects of Pulsed Electric Field Processing on Quality Characteristics and Microbial Inactivation of Soymilk

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Effects of pulsed electric fields (PEF) on quality characteristics and microbial inactivation of soymilk were studied with different PEF parameters. PEF did not affect significantly the values of pH, “a” (an indicator of redness ranging from “−a” to “+a”, −a = green, +a = red) and electric conductivity. The values of “L” (white if “L” = 100, black if “L” = 0) increased slightly, whereas values of viscosity and “b” (an indicator of yellowness ranging from “−b” to “+b”, −b = blue, +b = yellow) decreased slightly as PEF time increased from 0 to 547 μs. Cysteine, tyrosine, phenylalanine, and serine reduced with the increase of PEF time. The relative activities of soybean lipoxygenase (SLOX) decreased with PEF time increasing from 0 to 1,036 μs. When PEF time and strength increased, the inactivation of Escherichia coli and Staphylococus aureus increased significantly (p < 0.05), achieving a maximum of 5.20 and 3.51 log10 cycles reduction at PEF time 547 μs and pulsed electric strength 40 kV/cm, respectively. The inactivation of E. coli, S. aureus, and SLOX as a function PEF time followed Weibull distribution. This study demonstrated that PEF could inactivate efficiently E. coli, S. aureus, and SLOX without affecting the quality characteristics of soymilk. Thus, this technique could be an advantageous alternative to heat treatment for pasteurization of soymilk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akdemir, E. G., Jina, Z. T., Ruhlmana, K. T., Qiua, X., Zhanga, Q. H., & Richterb, E. R. (2000). Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems. Innovative Food Science and Emerging Technologies, 1, 77–86.

    Article  Google Scholar 

  • Akoum, O., Richfield, D., Jaffrin, M. Y., Ding, L. H., & Swart, P. (2006). Recovery of trypsin inhibitor and soy milk protein concentration by dynamic filtration. Journal of Membrane Science, 279, 291–300.

    Article  CAS  Google Scholar 

  • Altuntas, J., Evrendilek, G. A., Sangun, M. K., & Zhang, H. Q. (2010). Effects of pulsed electric field processing on the quality and microbial inactivation of sour cherry juice. International Journal of Food Science and Technology, 45, 899–905.

    CAS  Google Scholar 

  • Amiali, M., Ngadi, M. O., Raghavan, V. G. S., & Smith, J. P. (2004). Inactivation of Escherichia coli O157 H7 in liquid dialyzed egg using pulsed electric fields. Food and Bioproducts Processing, 82, 151–156.

    Article  Google Scholar 

  • Antoine, F., Wei, C., Littell, R., Quinn, B., Hogle, A., & Marshall, M. (2001). Free amino acids in dark- and white-muscle fish as determined by o-phthaldialdehyde precolumn derivatization. Journal of Food Science, 66, 72–74.

    Article  CAS  Google Scholar 

  • Aronsson, K., Lindgren, M., Johansson, B. R., & Ronner, U. (2001). Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innovative Food Science and Emerging Technologies, 2, 41–54.

    Article  Google Scholar 

  • Arroyo, C., Cebrián, G., Pagán, R., & Condón, S. (2010). Resistance of enterobacter sakazakii to pulsed electric fields. Innovative Food Science & Emerging Technologies, 11, 314–321.

    Article  CAS  Google Scholar 

  • Barsotti, L., Dumay, E., Mu, T. H., Diaz, M. D. F., & Cheftel, J. C. (2002). Effects of high voltage electric pulses on protein-based food constituents and structures. Trends in Food Science & Technology, 12, 136–144.

    Article  Google Scholar 

  • Baur, C., Groch, W., Wieser, H., & Jugel, H. (1977). Enzymatic oxidation of linoleic acid: formation of bittertasting fatty acids. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 164, 171–176.

    Article  CAS  Google Scholar 

  • Bazhal, M. I., Ngadi, M. O., Raghavan, G. S. V., & Smith, J. P. (2006). Inactivation of Escherichia coli O157:H7 in liquid whole egg using combined pulsed electric field and thermal treatments. LWT- Food Science and Technology, 39, 419–425.

    Article  Google Scholar 

  • Carroll, K. K., & Kurowska, E. M. (1995). Soy consumption and cholesterol reduction: review of animal and human studies. Journal of Nutrition, 125, 594S–597S.

    CAS  Google Scholar 

  • Cortés, C., Esteve, M. J., Frίgola, A., & Torregrosa, F. (2005). Quality characteristics of horchata (a Spanish vegetable beverage) treated with pulsed electric fields during shelf-life. Food Chemistry, 91, 319–325.

    Article  Google Scholar 

  • Cruz, A. G. D., Faria, J. D. A. F., Saad, S. M. I., Bolini, H. M. A., Ana, A. S. S., & Cristianini, M. (2010). High pressure processing and pulsed electric fields: potential use in probiotic dairy foods processing. Trends in Food Science & Technology, 21, 483–493.

    Article  Google Scholar 

  • D’Alessandro, T., Prasain, J., Benton, M. R., Botting, N., Moore, R., Darley-Usmar, V., Patel, R., & Barnes, S. (2003). Polyphenol, inflammatory response, and cancer prevention: chlorination of isoflavones by human neutrophils. Journal of Nutrition, 133, 3773S–3777S.

    Google Scholar 

  • Dutreux, N., Notermans, S., Wijtzes, T., Gongora-Nieto, M. M., Barbosa-Canovas, G. V., & Swanson, B. G. (2000). Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. International Journal of Food Microbiology, 54, 91–98.

    Article  CAS  Google Scholar 

  • Elez-Martίnez, P., & Martίn-Belloso, O. (2007). Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry, 102, 201–209.

    Article  Google Scholar 

  • Elez-Martίnez, P., Aguilό-Aguayo, I., & Martίn-Belloso, O. (2006). Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 86, 71–81.

    Article  Google Scholar 

  • Eskin, N. A. M., Grossman, S., & Pinsky, A. (1977). Biochemistry of lipoxygenase in relation to food quality. Critical Reviews in Food Science and Nutrition, 4, 1–40.

    Google Scholar 

  • Evrendilek, G. A., Jin, Z. T., Ruhlman, K. T., Qiu, X., Zhang, Q. H., & Richter, E. R. (2000). Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems. Innovative Food Science and Emerging Technologies, 1, 77–86.

    Article  Google Scholar 

  • Evrendilek, G. A., Zhang, Q. H., & Richter, E. R. (2004). Application of pulsed electric fields to skim milk inoculated with Staphylococcus aureus. Biosystems Engineering, 87, 137–144.

    Article  Google Scholar 

  • Fernandez-Diaz, M. D., Barsotti, L., Dumay, E., & Cheftel, J. C. (2000). Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. Journal of Agricultural and Food Chemistry, 48, 2332–2339.

    Article  CAS  Google Scholar 

  • Gachovska, T. K., Kumar, S., Thippareddi, H., Subbiah, J., & Williams, F. (2008). Ultraviolet and pulsed electric field treatments have additive effect on inactivation of E. coli in apple juice. Journal of Food Science, 73, M412–M417.

    Article  CAS  Google Scholar 

  • García, D., Somolinos, M., Hassani, M., Alvarez, I., & Pagán, R. (2009). Modeling the inactivation kinetics of Escherichia coli O157:H7 during the storage under refrigeration of apple juice treated by pulsed electric fields. Journal of Food Safety, 29, 546–563.

    Article  Google Scholar 

  • Geeraerd, A. H., Valdramidis, V. P., & Van Impe, J. F. (2005). GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102, 95–105.

    Article  CAS  Google Scholar 

  • Girigowda, K., & Mulimani, V. H. (2006). Hydrolysis of galacto-oligosaccharides in soymilk by κ-carrageenan-entrapped α-galactosidase from Aspergillus oryzae. World Journal of Microbiology and Biotechnology, 22, 437–442.

    Article  CAS  Google Scholar 

  • Heinz, V., Álvarez, I., Angersbach, A., & Knorr, D. (2001). Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design. Trends in Food Science & Technology, 12, 103–111.

    Article  CAS  Google Scholar 

  • Heinz, V., Toepfl, S., & Knorr, D. (2003). Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innovative Food Science and Emerging Technologies, 4, 167–175.

    Article  Google Scholar 

  • Huang, K., & Wang, J. (2009). Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: a review. Journal of Food Engineering, 95, 227–239.

    Article  Google Scholar 

  • Jaeger, H., Meneses, N., Moritz, J., & Knorr, D. (2010). Model for the differentiation of temperature and electric field effects during thermal assisted PEF processing. Journal of Food Engineering, 100, 109–118.

    Article  Google Scholar 

  • Kumara, V., Rania, A., Tindwanib, C., & Jainb, M. (2003). Lipoxygenase isozymes and trypsin inhibitor activities in soybean as influenced by growing location. Food Chemistry, 83, 79–83.

    Article  Google Scholar 

  • Li, S. Q., & Zhang, Q. H. (2004). Inactivation of E. coli 8739 in enriched soymilk using pulsed electric fields. Journal of Food Science, 69, M169–M174.

    Article  CAS  Google Scholar 

  • Li, S. Q., Zhang, Q. H., Lee, Y. Z., & Pham, T. V. (2003). Effects of pulsed electric fields and thermal processing on the stability of bovine immunoglobulin G (IgG) in enriched soymilk. Journal of Food Science, 68, 1201–1207.

    Article  CAS  Google Scholar 

  • Li, Y., Chen, Z., & Mo, H. (2007). Effects of pulsed electric fields on physicochemical properties of soybean protein isolates. LWT- Food Science and Technology, 40, 1167–1175.

    Article  CAS  Google Scholar 

  • Li, Y. Q., Chen, Q., Liu, X. H., & Chen, Z. X. (2008). Inactivation of soybean lipoxygenase in soymilk by pulsed electric fields. Food Chemistry, 109, 408–414.

    Article  CAS  Google Scholar 

  • Min, S., Jin, Z. T., & Zhang, Q. H. (2003). Commercial scale pulsed electric field processing of tomato juice. Journal of Agricultural and Food Chemistry, 51, 3338–3344.

    Article  CAS  Google Scholar 

  • Monfort, S., Gayán, E., Raso, J., Condón, S., & Álvarez, I. (2010a). Evaluation of pulsed electric fields technology for liquid whole egg pasteurization. Food Microbiology, 27, 845–852.

    Article  CAS  Google Scholar 

  • Monfort, S., Gayán, E., Saldaña, G., Puértolas, E., Condón, S., Raso, J., & Álvarez, I. (2010b). Inactivation of Salmonella typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innovative Food Science and Emerging Technologies, 11, 306–313.

    Article  CAS  Google Scholar 

  • Mosqueda-Melgar, J., Raybaudi-Massilia, R. M., & Martín-Belloso, O. (2008). Nonthermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innovative Food Science and Emerging Technologies, 9, 328–340.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S., & Ramaswamy, R. (2011). Application of emerging technologies to control Salmonella in foods: a review. Food Research International. doi:10.1016/j.foodres.2011.05.016.

  • Nagata, Y., Ishiwaki, M., & Sugano, M. (1982). Studies on the mechanism of antihypercholesterolemic action of soy protein-type amino acid mixtures in relation to the casein counterpart in rats. Journal of Nutrition, 112, 1614–1625.

    CAS  Google Scholar 

  • Olsena, N. V., Grunertb, K. G., & Sonne, A. M. (2010). Consumer acceptance of high pressure processing and pulsed-electric field: a review. Trends in Food Science & Technology, 21, 464–472.

    Article  Google Scholar 

  • Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43, 1936–1943.

    Article  Google Scholar 

  • Pothakamury, U. R., Monsalve-González, A., Barbosa-Cánovas, G. V., & Swanson, B. G. (1995). Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric field technology. Food Research International, 28, 167–171.

    Article  Google Scholar 

  • Pothakamury, U. R., Barbosa-Cánovas, G. V., Swanson, B. G., & Spence, K. D. (1997). Ultrastructural changes in Staphylococcus aureus treated with pulsed electric fields. Food Science and Technology, 3, 113–121.

    Article  Google Scholar 

  • Quitão-Teixeira, L. J., Aguiló-Aguayo, I., Ramos, A. M., & Martín-Belloso, O. (2008). Inactivation of oxidative enzymes by high-intensity pulsed electric field for retention of color in carrot juice. Food and Bioprocess Technology, 1, 364–373.

    Article  Google Scholar 

  • Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Research International, 44, 1875–1887.

    Article  CAS  Google Scholar 

  • Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2008). Combined effect of temperature and pulsed electric fields on soya milk lipoxygenase inactivation. European Food Research and Technology, 227, 1461–1465.

    Article  CAS  Google Scholar 

  • Rios-Iriarte, B. J., & Barnes, R. H. (1996). The effect of overheating on certain nutritional properties of the proteins of soybean. Food Technology, 32, 836–839.

    Google Scholar 

  • Rodrigo, D., Barbosa-Canovas, G. V., Martınez, A., & Rodrigo, M. (2003). Pectin methyl esterase and natural microflora of fresh mixed orange and carrot juice treated with pulsed electric fields. Journal of Food Protection, 66, 2336–2342.

    CAS  Google Scholar 

  • Rodríguez-Calleja, J. M., Cebrián, G., Condón, S., & Mañas, P. (2006). Variation in resistance of natural isolates of Staphylococcus aureus to heat, pulsed electric fields and ultrasound under pressure. Journal of Applied Microbiology, 100, 1054–1062.

    Article  Google Scholar 

  • Saldaña, G., Puértolas, E., López, N., García, D., Álvarez, I., & Raso, J. (2009). Comparing the PEF resistance and occurrence of sublethal injury on different strains of Escherichia coli, Salmonella typhimurium, Listeria monocytogenes and Staphylococcus aureus in media of pH 4 and 7. Innovative Food Science and Emerging Technologies, 10, 160–165.

    Article  Google Scholar 

  • Saldaña, G., Puértolas, E., Condón, S., Álvarez, I., & Raso, J. (2010). Modeling inactivation kinetics and occurrence of sublethal injury of a pulsed electric field-resistant strain of Escherichia coli and Salmonella typhimurium in media of different pH. Innovative Food Science and Emerging Technologies, 11, 290–298.

    Article  Google Scholar 

  • Sobrino-Lopez, A., Raybaudi-Massilia, R., & Martin-Belloso, O. (2006). High-Intensity pulsed electric field variables affecting Staphylococcus aureus inoculated in milk. Journal of Dairy Science, 89, 3739–3748.

    Article  CAS  Google Scholar 

  • Sorgentini, D. A., Wagner, J. R., & Anon, M. C. (1995). Effects of thermal treatment soy protein isolate on the characteristics and structure–function relationship of soluble and insoluble fractions. Journal of Agricultural and Food Chemistry, 43, 2471–2479.

    Article  CAS  Google Scholar 

  • Toepfl, S., Heinz, V., & Knorr, D. (2007). High intensity pulsed electric fields applied for food preservation. Chemical Engineering and Processing, 46, 537–546.

    Article  CAS  Google Scholar 

  • Van Loey, A., Verachtert, B., & Hendrickx, M. (2002). Effects of high electric field pulses on enzymes. Trends in Food Science & Technology, 12, 94–102.

    Article  Google Scholar 

  • Walkling-Ribeiro, M., Noci, F., Riener, J., Cronin, D. A., Lyng, J. G., & Morgan, D. J. (2009). The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food and Bioprocess Technology, 2, 422–430.

    Article  Google Scholar 

  • Wei, H., Saladi, R., Lu, Y., Wang, Y., Palep, S. R., Moore, J., Phelps, R., Shyong, E., & Lebwohl, M. G. (2003). Isoflavone genistein: photoprotection and clinical implications in dermatology. Journal of Nutrition, 133, 3811S–3819S.

    CAS  Google Scholar 

  • Wouters, P. C., Alvarez, I., & Raso, J. (2001). Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science & Technology, 12, 112–121.

    Article  CAS  Google Scholar 

  • Xiang, B. Y., Ngadi, M. O., Ochoa-Martinez, L. A., & Simpson, M. V. (2010). Pulsed electric field-induced structural modification of whey protein isolate. Food and Bioprocess Technology. doi:10.1007/s11947-009-0266-z.

  • Yu, L. J., Ngadi, M., & Raghavan, V. (2010). Proteolysis of cheese slurry made from pulsed electric field-treated milk. Food and Bioprocess Technology. doi:10.1007/s11947-010-0341-5.

  • Zhang, Q., Chang, F. J., Barbosa-Cánovas, G. V., & Swanson, B. G. (1994). Inactivation of microorganisms in semisolid foods using high voltage pulsed electric fields. Journal of Food Processing and Preservation, 19, 103–118.

    Article  CAS  Google Scholar 

  • Zhao, W., & Yang, R. (2010). Pulsed electric field induced aggregation of food proteins: ovalbumin and bovine serum albumin. Food and Bioprocess Technology. doi:10.1007/s11947-010-0464-8.

  • Zhao, W., Yang, R., Lu, R., Wang, M., Qian, P., & Yang, W. (2008). Effect of PEF on microbial inactivation and physical-chemical properties of green tea extracts. LWT- Food Science and Technology, 41, 425–431.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Pilwat, G., & Riemann, F. (1974). Dielectric breakdown of cell membranes. Biophysics of Journal, 14, 881–899.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Development Planning of Shandong Province (2010GNC10917 and 2011GGH22110) and Shandong Provincial Natural Science Foundation (ZR2011CM039), Jinan, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Qiu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YQ., Tian, WL., Mo, HZ. et al. Effects of Pulsed Electric Field Processing on Quality Characteristics and Microbial Inactivation of Soymilk. Food Bioprocess Technol 6, 1907–1916 (2013). https://doi.org/10.1007/s11947-012-0868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0868-8

Keywords

Navigation