Skip to main content
Log in

New insights into the organization of the basal ganglia

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Understanding the functional organization of the basal ganglia requires a broad array of complementary theoretical models. Although the basal ganglia operate as part of a system of parallel cortico-basal ganglia-thalamocortical loops, there is clearly integration between the loops and there are probably more of these loops than previously conceived. Moreover, modulation by external inputs, particularly from the brainstem (eg, pedunculopontine nucleus, raphe nucleus, and locus coeruleus) adds to the complexity of the system. We now appreciate that the organization of the basal ganglia is not static and shows significant plasticity that allows the ganglia to function in learning processes and in response to age or disease, either as components of the pathophysiology or as compensatory mechanisms to reduce the functional impact of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Parent A, Hazrati LN: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 1995, 20:91–127.

    Article  PubMed  CAS  Google Scholar 

  2. Parent A, Hazrati LN: Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 1995, 20:128–154.

    Article  PubMed  CAS  Google Scholar 

  3. DeLong MR: Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990, 13:281–285.

    Article  PubMed  CAS  Google Scholar 

  4. Gregoire L, Samadi P, Graham J, et al.: Low doses of sarizotan reduce dyskinesias and maintain antiparkinsonian efficacy of l-dopa in parkinsonian monkeys. Parkinsonism Relat Disord 2009 Feb 2 (Epub ahead of print).

  5. Goetz CG, Damier P, Hicking C, et al.: Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord 2007, 22:179–186.

    Article  PubMed  Google Scholar 

  6. Morelli M, Di Paolo T, Wardas J, et al.: Role of adenosine A2A receptors in parkinsonian motor impairment and l-dopa-induced motor complications. Prog Neurobiol 2007, 83:293–309.

    Article  PubMed  CAS  Google Scholar 

  7. Kanda T, Jackson MJ, Smith LA, et al.: Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 1998, 43:507–513.

    Article  PubMed  CAS  Google Scholar 

  8. Bara-Jimenez W, Sherzai A, Dimitrova T, et al.: Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology 2003, 61:293–296.

    PubMed  CAS  Google Scholar 

  9. Molina-Hernandez A, Nunez A, Arias-Montano JA: Histamine H3-receptor activation inhibits dopamine synthesis in rat striatum. Neuroreport 2000, 11:163–166.

    Article  PubMed  CAS  Google Scholar 

  10. Molina-Hernandez A, Nunez A, Sierra JJ, Arias-Montano JA: Histamine H3 receptor activation inhibits glutamate release from rat striatal synaptosomes. Neuropharmacology 2001, 41:928–934.

    Article  PubMed  CAS  Google Scholar 

  11. Nowak P, Bortel A, Dabrowska J, et al.: Histamine H(3) receptor ligands modulate L-dopa-evoked behavioral responses and L-dopa derived extracellular dopamine in dopamine-denervated rat striatum. Neurotox Res 2008, 13:231–240.

    Article  PubMed  CAS  Google Scholar 

  12. Gomez-Ramirez J, Johnston TH, Visanji NP, et al.: Histamine H3 receptor agonists reduce L-dopa-induced chorea, but not dystonia, in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord 2006, 21:839–846.

    Article  PubMed  Google Scholar 

  13. Bradley SR, Standaert DG, Rhodes KJ, et al.: Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. J Comp Neurol 1999, 407:33–46.

    Article  PubMed  CAS  Google Scholar 

  14. Marino MJ, Conn JP: Modulation of the basal ganglia by metabotropic glutamate receptors: potential for novel therapeutics. Curr Drug Targets CNS Neurol Disord 2002, 1:239–250.

    Article  PubMed  CAS  Google Scholar 

  15. Bonsi P, Cuomo D, Picconi B, et al.: Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson’s disease. Amino Acids 2007, 32:189–195.

    Article  PubMed  CAS  Google Scholar 

  16. Lopez S, Turle-Lorenzo N, Johnston TH, et al.: Functional interaction between adenosine A2A and group III metabotropic glutamate receptors to reduce parkinsonian symptoms in rats. Neuropharmacology 2008, 55:483–490.

    Article  PubMed  CAS  Google Scholar 

  17. Brotchie JM: Adjuncts to dopamine replacement: a pragmatic approach to reducing the problem of dyskinesia in Parkinson’s disease. Mov Disord 1998, 13:871–876.

    Article  PubMed  CAS  Google Scholar 

  18. Montgomery EB Jr: Basal ganglia physiology and pathophysiology: a reappraisal. Parkinsonism Relat Disord 2007, 13:455–465.

    Article  PubMed  Google Scholar 

  19. Parent A, Sato F, Wu Y, et al.: Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci 2000, 23:S20–S27.

    Article  PubMed  CAS  Google Scholar 

  20. Galvan A, Wichmann T: Pathophysiology of parkinsonism. Clin Neurophysiol 2008, 119:1459–1474.

    Article  PubMed  CAS  Google Scholar 

  21. Hammond C, Bergman H, Brown P: Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 2007, 30:357–364.

    Article  PubMed  CAS  Google Scholar 

  22. Kuhn AA, Kempf F, Brucke C, et al.: High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 2008, 28:6165–6173.

    Article  PubMed  CAS  Google Scholar 

  23. Cicchetti F, Prensa L, Wu Y, Parent A: Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Brain Res Rev 2000, 34:80–101.

    Article  PubMed  CAS  Google Scholar 

  24. Yamada H, Matsumoto N, Kimura M: Tonically active neurons in the primate caudate nucleus and putamen differentially encode instructed motivational outcomes of action. J Neurosci 2004, 24:3500–3510.

    Article  PubMed  CAS  Google Scholar 

  25. Levesque JC, Parent A: GABAergic interneurons in human subthalamic nucleus. Mov Disord 2005, 20:574–584.

    Article  PubMed  Google Scholar 

  26. Howes OD, Montgomery AJ, Asselin MC, et al.: Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry Suppl 2007, 51:s13–s18.

    Article  PubMed  Google Scholar 

  27. Abi-Dargham A, Gil R, Krystal J, et al.: Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 1998, 155:761–767.

    PubMed  CAS  Google Scholar 

  28. Fenelon G, Mahieux F, Huon R, Ziegler M: Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain 2000, 123(Pt 4):733–745.

    Article  Google Scholar 

  29. Fenelon G, Thobois S, Bonnet AM, et al.: Tactile hallucinations in Parkinson’s disease. J Neurol 2002, 249:1699–1703.

    Article  PubMed  Google Scholar 

  30. Middleton FA, Strick PL: The temporal lobe is a target of output from the basal ganglia. Proc Natl Acad Sci U S A 1996, 93:8683–8687.

    Article  PubMed  CAS  Google Scholar 

  31. Halgren E, Dale AM, Sereno MI, et al.: Location of human face-selective cortex with respect to retinotopic areas. Hum Brain Mapp 1999, 7:29–37.

    Article  PubMed  CAS  Google Scholar 

  32. Harding AJ, Broe GA, Halliday GM: Visual hallucinations in Lewy body disease relate to Lewy bodies in the temporal lobe. Brain 2002, 125:391–403.

    Article  PubMed  CAS  Google Scholar 

  33. Okada K, Suyama N, Oguro H, et al.: Medication-induced hallucination and cerebral blood flow in Parkinson’s disease. J Neurol 1999, 246:365–368.

    Article  PubMed  CAS  Google Scholar 

  34. Oishi N, Udaka F, Kameyama M, et al.: Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology 2005, 65:1708–1715.

    Article  PubMed  CAS  Google Scholar 

  35. Nagano-Saito A, Washimi Y, Arahata Y, et al.: Visual hallucination in Parkinson’s disease with FDG PET. Mov Disord 2004, 19:801–806.

    Article  PubMed  Google Scholar 

  36. Manford M, Andermann F: Complex visual hallucinations. Clinical and neurobiological insights. Brain 1998, 121(Pt 10):1819–1840.

    Article  PubMed  Google Scholar 

  37. Beckstead RM: Long collateral branches of substantia nigra pars reticulata axons to thalamus, superior colliculus and reticular formation in monkey and cat. Multiple retrograde neuronal labeling with fluorescent dyes. Neuroscience 1983, 10:767–779.

    Article  PubMed  CAS  Google Scholar 

  38. Matsumura M: The pedunculopontine tegmental nucleus and experimental parkinsonism. A review. J Neurol 2005, 252(Suppl 4):IV5–IV12.

    Article  PubMed  Google Scholar 

  39. Parent A, Parent M, Charara A: Glutamatergic inputs to midbrain dopaminergic neurons in primates. Parkinsonism Relat Disord 1999, 5:193–201.

    Article  PubMed  CAS  Google Scholar 

  40. Stefani A, Lozano AM, Peppe A, et al.: Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 2007, 130:1596–1607.

    Article  PubMed  Google Scholar 

  41. Sidibe M, Pare JF, Smith Y: Nigral and pallidal inputs to functionally segregated thalamostriatal neurons in the centromedian/parafascicular intralaminar nuclear complex in monkey. J Comp Neurol 2002, 447:286–299.

    Article  PubMed  Google Scholar 

  42. Sadikot AF, Rymar VV: The primate centromedian-parafascicular complex: anatomical organization with a note on neuromodulation. Brain Res Bull 2009, 78:122–130.

    Article  PubMed  Google Scholar 

  43. Caparros-Lefebvre D, Blond S, Feltin MP, et al.: Improvement of levodopa induced dyskinesias by thalamic deep brain stimulation is related to slight variation in electrode placement: possible involvement of the centre median and parafascicularis complex. J Neurol Neurosurg Psychiatry 1999, 67:308–314.

    Article  PubMed  CAS  Google Scholar 

  44. Mazzone P, Stocchi F, Galati S, et al.: Bilateral implantation of centromedian-parafascicularis complex and GPi: a new combination of unconventional targets for deep brain stimulation in severe Parkinson disease. Neuromodulation 2006, 9:221–228.

    Article  Google Scholar 

  45. Nauta WJ, Mehler WR: Projections of the lentiform nucleus in the monkey. Brain Res 1966, 1:3–42.

    Article  PubMed  CAS  Google Scholar 

  46. Sutherland RJ: The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 1982, 6:1–13.

    Article  PubMed  CAS  Google Scholar 

  47. Hikosaka O, Sesack SR, Lecourtier L, Shepard PD: Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci 2008, 28:11825–11829.

    Article  PubMed  CAS  Google Scholar 

  48. Matsumoto M, Hikosaka O: Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 2007, 447:1111–1115.

    Article  PubMed  CAS  Google Scholar 

  49. Goetz CG, Wuu J, Curgian LM, Leurgans S: Hallucinations and sleep disorders in PD: six-year prospective longitudinal study. Neurology 2005, 64:81–86.

    PubMed  Google Scholar 

  50. Boeve BF, Silber MH, Saper CB, et al.: Pathophysiology of REM sleep behavior disorder and relevance to neurodegenerative disease. Brain 2007, 130:2770–2788.

    Article  PubMed  CAS  Google Scholar 

  51. Datta S, Spoley EE, Patterson EH: Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am J Physiol Regul Integr Comp Physiol 2001, 280:R752–R759.

    PubMed  CAS  Google Scholar 

  52. Rommelfanger KS, Edwards GL, Freeman KG, et al.: Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci U S A 2007, 104:13804–13809.

    Article  PubMed  CAS  Google Scholar 

  53. Mavridis M, Degryse AD, Lategan AJ, et al.: Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience 1991, 41:507–523.

    Article  PubMed  CAS  Google Scholar 

  54. Zarow C, Lyness SA, Mortimer JA, Chui HC: Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 2003, 60:337–341.

    Article  PubMed  Google Scholar 

  55. Braak H, Del Tredici K: Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 2008, 70:1916–1925.

    Article  PubMed  Google Scholar 

  56. Kreitzer AC, Malenka RC: Striatal plasticity and basal ganglia circuit function. Neuron 2008, 60:543–554.

    Article  PubMed  CAS  Google Scholar 

  57. Shen W, Flajolet M, Greengard P, Surmeier DJ: Dichotomous dopaminergic control of striatal synaptic plasticity. Science 2008, 321:848–851.

    Article  PubMed  CAS  Google Scholar 

  58. Brotchie J, Fitzer-Attas C: Mechanisms compensating for dopamine loss in early Parkinson disease. Neurology 2009, 72:S32–S38.

    Article  PubMed  CAS  Google Scholar 

  59. Obeso JA, Schapira AH: Compensatory mechanisms in Parkinson’s disease. Mov Disord 2009, 24:153–154.

    Article  PubMed  Google Scholar 

  60. Visanji NP, Orsi A, Johnston TH, et al.: PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson’s disease. FASEB J 2008, 22:2488–2497.

    Article  PubMed  CAS  Google Scholar 

  61. Huot P, Levesque M, Morissette M, et al.: L-dopa treatment abolishes the numerical increase in striatal dopaminergic neurons in parkinsonian monkeys. J Chem Neuroanat 2008, 35:77–84.

    Article  PubMed  CAS  Google Scholar 

  62. Tande D, Hoglinger G, Debeir T, et al.: New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain 2006, 129:1194–1200.

    Article  PubMed  Google Scholar 

  63. Bedard A, Gravel C, Parent A: Chemical characterization of newly generated neurons in the striatum of adult primates. Exp Brain Res 2006, 170:501–512.

    Article  PubMed  CAS  Google Scholar 

  64. Borta A, Hoglinger GU: Dopamine and adult neurogenesis. J Neurochem 2007, 100:587–595.

    Article  PubMed  CAS  Google Scholar 

  65. Gubellini P, Picconi B, Bari M, et al.: Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 2002, 22:6900–6907.

    PubMed  CAS  Google Scholar 

  66. Hille CJ, Fox SH, Maneuf YP, et al.: Antiparkinsonian action of a delta opioid agonist in rodent and primate models of Parkinson’s disease. Exp Neurol 2001, 172:189–198.

    Article  PubMed  CAS  Google Scholar 

  67. Brotchie JM: Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord 2005, 20:919–931.

    Article  PubMed  Google Scholar 

  68. Troiano AR, de la Fuente-Fernandez R, Sossi V, et al.: PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology 2009, 72:1211–1216.

    Article  PubMed  CAS  Google Scholar 

  69. Fahn S: Levodopa in the treatment of Parkinson’s disease. J Neural Transm Suppl 2006 (71):1–15.

    Google Scholar 

  70. Elmer L, Schwid S, Eberly S, et al.: Rasagiline-associated motor improvement in PD occurs without worsening of cognitive and behavioral symptoms. J Neurol Sci 2006, 248:78–83.

    Article  PubMed  CAS  Google Scholar 

  71. Olanow CW, Hauser RA, Jankovic J, et al.: A randomized, double-blind, placebo-controlled, delayed start study to assess rasagiline as a disease modifying therapy in Parkinson’s disease (the ADAGIO study): rationale, design, and baseline characteristics. Mov Disord 2008, 23:2194–2201.

    Article  PubMed  Google Scholar 

  72. Chung CY, Seo H, Sonntag KC, et al.: Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 2005, 14:1709–1725.

    Article  PubMed  CAS  Google Scholar 

  73. Simunovic F, Yi M, Wang Y, et al.: Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 2008 Dec 3 (Epub ahead of print).

  74. Chan CS, Guzman JN, Ilijic E, et al.: ’Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 2007, 447:1081–1086.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Brotchie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koprich, J.B., Johnston, T.H., Huot, P. et al. New insights into the organization of the basal ganglia. Curr Neurol Neurosci Rep 9, 298–304 (2009). https://doi.org/10.1007/s11910-009-0045-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-009-0045-2

Keywords

Navigation