Skip to main content
Log in

The pedunculopontine tegmental nucleus and experimental parkinsonism

A review

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

In this article, I review a series of my experiments on the role of the pedunculopontine tegmental nucleus (Ppn) in voluntary movements. I sought to elucidate the functional role of the Ppn in the control of voluntary movements using macaque monkeys. I propose a functional model of basal ganglia circuitry in which I emphasize the role of the Ppn and discuss the underlying mechanisms of parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. TINS 12:366–375

    PubMed  Google Scholar 

  2. Alexander GE (1994) Basal ganglia—thalamocortical circuits: Their role in control of movements. J Clin Neurophysiol 11:420–431

    PubMed  Google Scholar 

  3. Aziz TZ, Davies L, Stein J, France S (1998) The role of descending basal ganglia connections to the brain stem in parkinsonian akinesia. Br J Neurosurg 12:245–249

    Article  PubMed  Google Scholar 

  4. Carter CJ (1982) Topographic distribution of possible glutamatergic pathways from the frontal cortex to the striatum and substantia nigra in rats. Neuropharmacology 21:379–383

    Article  PubMed  Google Scholar 

  5. Charara A, Smith Y, Parent A (1996) Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates; Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J Comp Neurol 364:254–266

    Article  PubMed  Google Scholar 

  6. Condé H, Dormont JF, Farin D (1998) The role of pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. II. Effects of reversible inactivation by intracerebral microinjections. Exp Brain Res 121:411–418

    Article  PubMed  Google Scholar 

  7. Crossman AR (1987) Primate models of dyskinesia—The experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 21:1–40

    Article  PubMed  Google Scholar 

  8. Davis GC, Williams AC, Markey SP, Evert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychat Res 1:249–254

    Article  Google Scholar 

  9. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  PubMed  Google Scholar 

  10. Dormont JF, Condé H, Farin D (1998) The role of pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Exp Brain Res 121:401–410

    Article  PubMed  Google Scholar 

  11. Filion M (1979) Effects of interruption of the nigrostriatal pathway and of the dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey. Brain Res 178:425–441

    Article  PubMed  Google Scholar 

  12. Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151

    Article  PubMed  Google Scholar 

  13. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    PubMed  Google Scholar 

  14. Futami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21:331–342

    Article  PubMed  Google Scholar 

  15. Garcia-Rill E (1986) The basal ganglia and the locomotor regions. Brain Res Rev 11:47–63

    Article  Google Scholar 

  16. Garicia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36:363–389

    Article  PubMed  Google Scholar 

  17. Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the superior midbrain. Neuroscience 27:639–654

    Article  PubMed  Google Scholar 

  18. Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124

    Article  PubMed  Google Scholar 

  19. Harnois C, Filion M (1980) Pallidal neurons branching to the thalamus and to the midbrain in the monkey. Brain Res 186:222–225

    Article  PubMed  Google Scholar 

  20. Harnois C, Filion M (1982) Pallidofugal projections to the thalamus and to the midbrain: A quantitative antidromic activation study in monkeys and cats. Exp Brain Res 47:277–285

    Article  PubMed  Google Scholar 

  21. Hartmann-von Monakow K, Akert K, Künzle H (1979) Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis. Exp Brain Res 34:91–105

    PubMed  Google Scholar 

  22. Hazratti L-N, Parent A (1991) Contralateral pallidothalamic and pallidotegmental projections in primates: an anterograde and retrograde labeling study. Brain Res 567:212–223

    Article  PubMed  Google Scholar 

  23. Hazratti L-N, Parent A (1992) Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 585:267–271

    Article  PubMed  Google Scholar 

  24. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980

    PubMed  Google Scholar 

  25. Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29

    Article  PubMed  Google Scholar 

  26. Jackson A, Crossman AR (1983) Nucleus tegmenti pedunculopontinus: efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase. Neuroscience 10:725–765

    Article  PubMed  Google Scholar 

  27. Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543

    PubMed  Google Scholar 

  28. Kang Y, Kitai ST (1990) Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra pars reticulata. Brain Res 535:79–95

    Article  PubMed  Google Scholar 

  29. Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260:435–452

    Article  PubMed  Google Scholar 

  30. Kobayashi Y, Inoue Y,Yamamoto M, Isa T, Aizawa H (2002) Contribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys. J Neurophysiol 88:715–731

    Google Scholar 

  31. Kobayashi Y, Saito Y, Isa T (2001) Facilitation of saccade initiation by brainstem cholinergic system. Brain and Development 23:S24–S27

    Article  PubMed  Google Scholar 

  32. Kojima J, Yamaji Y, Matsumura M, Nambu A, Inase M, Tokuno H, Takada M, Imai H (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 226:111–114

    Article  PubMed  Google Scholar 

  33. Langston JW, Ballard PA, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    PubMed  Google Scholar 

  34. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: Distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209

    Article  PubMed  Google Scholar 

  35. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231

    Article  PubMed  Google Scholar 

  36. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344:232–241

    Article  PubMed  Google Scholar 

  37. Lozano AM, Lang AE (1998) Pallidotomy for Parkinson’s disease-review. Neurosurg Clin N Am 9:325–336

    PubMed  Google Scholar 

  38. Matsumura M (2001) Experimental parkinsonism in primates. Stereotactic Funct Neurosurg 77:91–97

    Article  Google Scholar 

  39. Matsumura M, Nambu A, Yamaji Y, Watanabe K, Imai H, Inase M, Tokuno H, Takada M (2000) Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegemental nucleus in the macaque monkey. Neuroscience 98:97–110

    Article  PubMed  Google Scholar 

  40. Matsumura M, Tremblay L, Richard H, Filion M (1995) Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neuroscience 65:59–70

    Article  PubMed  Google Scholar 

  41. Matsumura M, Watanabe K, Ohye C (1996) Neuronal activity of monkey pedunculopontine tegmental nucleus area. I. Activity related to voluntary arm movements. In: Ohye C, Kimura M, McKenzie J (eds) The Basal Ganglia V, Plenum Press, New York, pp 209–215

  42. Matsumura M, Watanabe K, Ohye C (1997) Single-unit activity in the primate nucleus tegmenti pedunculopintinus related to voluntary arm movement. Neurosci Res 28:155–165

    Article  PubMed  Google Scholar 

  43. Matsumura M, Watanabe K, Ohye C (2002) Effects of reversible blockade of pedunculopontine tegmental nucleus on a voluntary arm movement in monkeys. In Graybiel AM, DeLong MR (eds) The Basal Ganglia VI, Kluwer Academic/Plenum Publishers, New York, pp 151–158

  44. Mena-Segovia J, Bolam PJ, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? TINS 27:585–588

    PubMed  Google Scholar 

  45. Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation. Cholinergic neurons of the pedunculopontine and laterodosal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–623

    Article  PubMed  Google Scholar 

  46. Mitchell IJ, Clarke CE, Boyce S, Robertson RG, Peggs D, Sambrook MA (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-metyl-4-phynyl-1,2,3,6-tetrahydropyridine. Neuroscience 32:213–226

    Article  PubMed  Google Scholar 

  47. Moon Edley S, Graybiel AM (1983) The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus pars compacta. J Comp Neurol 217:187–215

    Article  PubMed  Google Scholar 

  48. Munro-Davies LE, Winter J, Aziz TZ, Stein JF (1999) The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia. Exp Brain Res 129:511–517

    Article  PubMed  Google Scholar 

  49. Nakano K, Hasegawa Y, Tokushige A, Nakagawa S, Kayahara T, Mizuno N (1990) Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res 537:54–68

    Article  PubMed  Google Scholar 

  50. Nandi D, Aziz TZ, Giladi N, Winter J, Stein JF (2002) Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain 125:2418–2430

    Article  PubMed  Google Scholar 

  51. Olszewski J, Baxter D (1982) Cytoarchitecture of the Human Brain Stem. 2nd ed,Karger, Basale, p 195

  52. Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1747–1783

    Article  Google Scholar 

  53. Paré D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86

    Article  PubMed  Google Scholar 

  54. Parent A, Côté P-Y, Lavoie B (1995) Chemical anatomy of primate basal ganglia. Prog Neurobiol 46:131–197

    Article  PubMed  Google Scholar 

  55. Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamocortical loop. Brain Res Rev 20:91–127

    Article  PubMed  Google Scholar 

  56. Parent M, Lévesque M, Parent A (1999) The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. Review. J Chemical Neuroanatomy 16:153–165

    Article  Google Scholar 

  57. Parent A, Mackey A, De Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primate: A fluorescence retrograde double labeling study. Neuroscience 10:1137–1150

    Article  PubMed  Google Scholar 

  58. Poirier LJ (1960) Experimental and histological study of midbrain dyskinesia. J Neurophysiol 23:534–551

    PubMed  Google Scholar 

  59. Reese NB, Garcial-Rill E, Skinner RD (1995) The pedunculopontine nucleusauditory input, arousal and pathophysiology. Progr Neurobiol 42:105–133

    Article  Google Scholar 

  60. Rye DB, Lee HJ, Saper CB, Wainer BH (1988) Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat. J Comp Neurol 269:315–341

    Article  PubMed  Google Scholar 

  61. Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528

    Article  PubMed  Google Scholar 

  62. Saitoh K, Hattori S, Song W-J, Isa T, Takakusaki K (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18:879–886

    Article  PubMed  Google Scholar 

  63. Sakai ST (1988) Corticonigral projections from area 6 in the raccoon. Exp Brain Res 73:498–504

    Article  PubMed  Google Scholar 

  64. Scarnati E, Proia A, Di Loreto S, Pacitti C (1987) The reciprocal electrophysiological influence between the nucleus tegmenti pedunculopontinus and the pars compacta of the substantia nigra in the rat. J Hirnforsh 1:95–105

    Google Scholar 

  65. Scarnati E, Florio T (1997) The pedunculopontine nucleus and related structures. Functional organization. Adv Neurol 74:97–110

    PubMed  Google Scholar 

  66. Shink E, Sidibé M, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 382:348–363

    Article  PubMed  Google Scholar 

  67. Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990) Locomotor projections from the pedunculopontine nucleus to the spinal cord. NeuroRep 1:183–186

    Google Scholar 

  68. Smith Y, Charara A, Paquet M, Kieval JZ, Paré J-F, Hanson JE, Hubert GW, Kuwajima M, Levey AI (2001) Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J Chemical Neuroanatomy 22:13–42

    Article  Google Scholar 

  69. Smith Y, Charara A, Parent A (1996) Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey. J Comp Neurol 364:231–253

    Article  PubMed  Google Scholar 

  70. Spann BM,Grofova I (1989) Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat. J Comp Neurol 283:13–27

    Article  PubMed  Google Scholar 

  71. Spann BM, Grofova I (1991) Nigropedunculopontine projection in the rat: An anterograde tracing study with Phaseolus vulgaris leudoaggulutinin (PHA-L). J Comp Neurol 311:375–388

    Article  PubMed  Google Scholar 

  72. Steckler T, Inglis W, Winn P, Sahgal A (1994) The pedunculopontine tegmental nucleus: a role in cognitive process? Brain Res Rev 19:298–318

    Article  PubMed  Google Scholar 

  73. Steriade M, Paré D, Parent A, Smith Y (1988) Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67

    Article  PubMed  Google Scholar 

  74. Takada M, Matsumura M, Kojima J, Yamaji Y, Inase M, Tokuno H, Nambu A, Imai H (2000) Protection against dopaminergic nigrostriatal cell death by excitatory input ablation. Eur J Neurosci 12:1771–1780

    Article  PubMed  Google Scholar 

  75. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: A new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308

    Article  PubMed  Google Scholar 

  76. Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M (2004) Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 50:137–151

    Article  PubMed  Google Scholar 

  77. Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST (1996) Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 371:345–361

    Article  PubMed  Google Scholar 

  78. Tokuno H, Moriizumi T, Kudo M, Nakamura Y (1988) A morphological evidence for monosynaptic projections from the nucleus tegmenti pedunculopontinus pars compacta (TPC) to nigrostriatal projection neurons. Neurosci Lett 85:1–4

    Article  PubMed  Google Scholar 

  79. Watanabe K, Matsumura M, Ohye C (1996) Neuronal activity of monkey pedunculopontine tegmental nucleus area. II. Activity related to load application on working arms. In: Ohye C, Kimura M, McKenzie J (eds) The Basal Ganglia V, Plenum Press, New York, pp 249–257

  80. Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758

    Article  PubMed  Google Scholar 

  81. Winn P (1998) Frontal syndrome as a consequence of lesions in the pedunculopontine tegmental nucleus: A short theoretical review. Brain Res Bull 47:551–563

    Article  PubMed  Google Scholar 

  82. Winn P, Brown VJ, Inglis WL (1997) On the relationship between the striatum and the pedunculopontine tegmental nucleus. Crit Rev Neurobiol 11:241–261

    PubMed  Google Scholar 

  83. Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Matsumura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumura, M. The pedunculopontine tegmental nucleus and experimental parkinsonism. J Neurol 252 (Suppl 4), iv5–iv12 (2005). https://doi.org/10.1007/s00415-005-4003-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-005-4003-x

Key words

Navigation