Skip to main content

Advertisement

Log in

Chemical characterization of newly generated neurons in the striatum of adult primates

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We recently demonstrated the existence of neurogenesis in the striatum of adult monkeys, but the number of striatal neurons generated under normal conditions was too small to establish their chemical phenotype. We therefore used brain-derived neurotrophic factor (BDNF), which promotes neuronal differentiation and survival and induces striatal neurogenesis in rodents, in an attempt to increase the number of newborn neurons in monkey striatum and facilitate their chemical characterization. An adenoviral vector (AdBDNF), encoding the human BDNF cDNA under the control of a strong promoter, was injected into the lateral ventricles (LVs) of adult squirrel monkeys, which were then treated with bromodeoxyuridine (BrdU). Two weeks after viral injection, numerous BrdU-positive cells were found within the striatum and many expressed microtubule-associated protein 2 (MAP-2) and neuronal nuclear protein (NeuN), two markers of mature neurons. Newborn neurons also expressed glutamic acid decarboxylase (GAD65/67), calbindin (CB) and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), three markers of striatal projection neurons. We found no BrdU-positive neurons displaying the phenotype of striatal interneurons. Numerous BrdU-positive cells located near the subventricular zone (SVZ) coexpressed the migrating neuroblast markers polysialylated neural cell adhesion (PSA-NCAM) and doublecortin (DCX), suggesting that precursor cells could migrate from LVs to striatal parenchyma and develop a neuronal phenotype once they reach the striatum. However, many pairs of BrdU-positive nuclei were observed in the striatal parenchyma, suggesting that newborn neurons could also arise from resident progenitor cells. The present study demonstrates that a single injection of AdBDNF increases the number of newborn neurons into adult primate striatum and that newborn striatal neurons exhibit the chemical phenotype of medium-spiny projection neurons, which are specifically targeted in Huntington’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ad:

Adenoviral vector

BDNF:

Brain-derived neurotrophic factor

BrdU:

Bromodeoxyuridine

CB:

Calbindin

ChAT:

Choline acetyltransferase

CR:

Calretinin

CMV:

Cytomegalovirus

CSF:

Cerebrospinal fluid

DARPP-32:

Dopamine- and cAMP-regulated phosphoprotein of 32 kDa

DCX:

Doublecortin

GAD:

Glutamic acid decarboxylase

GFAP:

Glial fibrillary acidic protein

LV:

Lateral ventricle

MAP-2:

Microtubule-associated protein 2

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NeuN:

Neuronal nuclear protein

OB:

Olfactory bulb

RMS:

Rostral migratory stream

PV:

Parvalbumin

PSA-NCAM:

Polysialylated neural cell adhesion

SS:

Somatostatin

SVZ:

Subventricular zone

TH:

Tyrosine hydroxylase

TuJ1:

β-Tubulin class III

References

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  • Bédard A, Cossette M, Lévesque M, Parent A (2002a) Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci Lett 328:213–216

    Article  PubMed  Google Scholar 

  • Bédard A, Lévesque M, Bernier PJ, Parent A (2002b) The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci 16:1917–1924

    Article  PubMed  Google Scholar 

  • Bédard A, Parent A (2004) Evidence of newly generated neurons in the human olfactory bulb. Dev Brain Res 151:159–168

    Article  CAS  Google Scholar 

  • Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 21:6718–6731

    PubMed  CAS  Google Scholar 

  • Bernier PJ, Bédard A, Vinet J, Lévesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA 99:11464–11469

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R, Turner R, Chockan V, DeLong MR, Allers KA, Walters J, Levey AI, Greenamyre JT (1997) Dopaminergic neuronsintrinsic to the primate striatum. J Neurosci 17:6761–6768

    PubMed  CAS  Google Scholar 

  • Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344

    Article  PubMed  CAS  Google Scholar 

  • Carlén M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisén J (2002) Functional integration of adult-born neurons. Curr Biol 12:606–608

    Article  PubMed  Google Scholar 

  • Chmielnicki E, Benraiss A, Economides AN, Goldman SA (2004) Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J Neurosci 24:2133–2142

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall RE (1992) A consideration of neural counting methods. Trends Neurosci 15:9–13

    Article  PubMed  CAS  Google Scholar 

  • Cossette M, Lévesque M, Parent A (1999) Extrastriatal dopaminergic innervation of the human basal ganglia. Neurosci Res 34:51–54

    Article  PubMed  CAS  Google Scholar 

  • Cossette M, Bédard A, Parent A (2003) Dopaminergic neurons in human striatum and neurogenesis in adult monkey striatum. Ann NY Acad Sci 991:346–349

    Article  Google Scholar 

  • Cossette M, Lecomte F, Parent A (2005) Morphology and distribution of dopaminergic neurons intrinsic to the human striatum. J Chem Neuroanat 29:1–11

    Article  PubMed  CAS  Google Scholar 

  • Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 16:2649–2658

    PubMed  CAS  Google Scholar 

  • Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168:415–427

    Article  PubMed  CAS  Google Scholar 

  • Emmers R, Akert K (1963) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). The University of Wisconsin Press, Madison

    Google Scholar 

  • Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S, Loughlin S (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA 97:14686–14691

    Article  PubMed  CAS  Google Scholar 

  • Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Baimbridge KG, Miller JJ (1985) The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 82:8780–8784

    Article  PubMed  CAS  Google Scholar 

  • Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is widely expressed by migrating neurons. Neuron 23:257–271

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999a) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA 96:5263–5267

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Reeves AJ, Graziano MS, Gross CG (1999b) Neurogenesis in the neocortex of adult primates. Science 286:548–552

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Vail N, Wagers M, Gross CG (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA 98:10910–10917

    Article  PubMed  CAS  Google Scholar 

  • Gravel C, Gotz R, Lorrain A, Sendtner M (1997) Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Nat Med 3:765–770

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23:435–447

    Article  PubMed  CAS  Google Scholar 

  • Kirschenbaum B, Goldman SA (1995) Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc Natl Acad Sci USA 92:210–214

    Article  PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98:4752–4757

    Article  PubMed  CAS  Google Scholar 

  • Lähteinen S, Pitkänen A, Knuutila J, Törönen P, Castrén E (2004) Brain-derived neurotrophic factor signaling modifies hippocampal gene expression during epileptogenesis in transgenic mice. Eur J Neurosci 19:3245–3254

    Article  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  PubMed  CAS  Google Scholar 

  • Mitchell IJ, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Carnahan J, Nawa H (1994) Brain-Derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165:243–256

    Article  PubMed  CAS  Google Scholar 

  • Ouimet CC, Langley-Gullion KC, Greengard P (1998) Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res 808:8–12

    Article  PubMed  CAS  Google Scholar 

  • Parent A (1996) Carpenter’s human neuroanatomy, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Parent A, Fortin M, Côté PY, Cicchetti F (1996) Calcium-binding proteins in primate basal ganglia. Neurosci Res 25:309–334

    Article  PubMed  CAS  Google Scholar 

  • Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813

    Article  PubMed  Google Scholar 

  • Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus and hypothalamus. J Neurosci 21:6706–6717

    PubMed  CAS  Google Scholar 

  • Porritt MJ, Batchelor PE, Hughes AJ, Kalnins R, Donnan GA, Howells DW (2000) New dopaminergic neurons in Parkinson’s disease striatum. Lancet 356:44–45

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  • Shetty AK, Turner DA (1998) In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: inducing effects of brain-derived neurotrophic factor. J Neurobiol 35:395–425

    Article  PubMed  CAS  Google Scholar 

  • Tonchev AB, Yamashima T, Zhao L, Okano HJ, Okano H (2003) Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Mol Cell Neurosci 23:292–301

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Ventimiglia R, Mather PE, Jones BE, Lindsay RM (1995) The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur J Neurosci 7:213–222

    Article  PubMed  CAS  Google Scholar 

  • Vilquin JT, Guérette B, Kinoshita I, Roy B, Goulet M, Gravel C, Roy R, Tremblay JP (1995) FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum Gene Ther 6:1391–1401

    Article  PubMed  CAS  Google Scholar 

  • Zigova T, Pencea V, Wiegand SJ, Luskin MB (1998) Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 11:234–245

    Article  PubMed  CAS  Google Scholar 

  • Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. Robert Benoit, Montreal General Hospital, for having provided the SS antibody. We also thank M. Lévesque, J.C. Lévesque, A. Lorrain., M. Massouh and C. Paquet for their precious technical help. This research was supported by grant MOP-5781 of the Canadian Institutes for Health Research (CIHR). A. Bédard was the recipient of a CIHR Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Parent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bédard, A., Gravel, C. & Parent, A. Chemical characterization of newly generated neurons in the striatum of adult primates. Exp Brain Res 170, 501–512 (2006). https://doi.org/10.1007/s00221-005-0233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0233-5

Keywords

Navigation