Skip to main content

Advertisement

Log in

Enterococcal Endocarditis: Can We Win the War?

  • Cardiovascular Infections (DP Levine, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Treatment of enterococcal infections has long been recognized as an important clinical challenge, particularly in the setting of infective endocarditis (IE). Furthermore, the increase prevalence of isolates exhibiting multidrug resistance (MDR) to traditional anti-enterococcal antibiotics such as ampicillin, vancomycin and aminoglycosides (high-level resistance) poses immense therapeutic dilemmas in hospitals around the world. Unlike IE caused by most isolates of Enterococcus faecalis, which still retain susceptibility to ampicillin and vancomycin, the emergence and dissemination of a hospital-associated genetic clade of multidrug resistant Enterococcus faecium, markedly limits the therapeutic options. The best treatment of IE MDR enterococcal endocarditis is unknown and the paucity of antibiotics with bactericidal activity against these organisms is a cause of serious concern. Although it appears that we are winning the war against E. faecalis, the battle rages on against isolates of multidrug-resistant E. faecium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. MacCallum WG, Hastings TW. A case of acute endocarditis caused by Micrococcus zymogenes (nov. spec.), with a description of the microorganism. J Exp Med. 1899;4:521–34.

    PubMed  CAS  Google Scholar 

  2. • Galloway-Peña J, Roh JH, Latorre M, Qin X, Murray BE. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS One. 2012;7(1):e30187. This paper compares 100 core genes from the available E. faecium genomes and shows that community-associated and hospital-associated strains belong to two ancestral clades.

    PubMed  Google Scholar 

  3. Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, Desjardins C, Cerqueira G, Gevers D, Walker S, Wortman J, Feldgarden M, Haas B, Birren B, Gilmore MS. Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of E. gallinarum and E. casseliflavus. MBio. 2012;3(1):e00318-11.

  4. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1–12.

    PubMed  Google Scholar 

  5. •• Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–78. Comprehensive review of the epidemiology, pathogenesis and resistance mechanisms of enterococci.

    PubMed  CAS  Google Scholar 

  6. Moreillon P, Que YA. Infective endocarditis. Lancet. 2004;363(9403):139–49.

    PubMed  Google Scholar 

  7. Olmsted SB, Kao SM, van Putte LJ, Gallo JC, Dunny GM. Role of the pheromone-inducible surface protein Asc10 in mating aggregate formation and conjugal transfer of the Enterococcus faecalis plasmid pCF10. J Bacteriol. 1991;173(23):7665–72.

    PubMed  CAS  Google Scholar 

  8. Waters CM, Hirt H, McCormick JK, Schlievert PM, Wells CL, Dunny GM. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol Microbiol. 2004;52(4):1159–71.

    PubMed  CAS  Google Scholar 

  9. Chuang-Smith ON, Wells CL, Henry-Stanley MJ, Dunny GM. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One. 2010;5(12):e15798.

    PubMed  CAS  Google Scholar 

  10. Schlievert PM, Gahr PJ, Assimacopoulos AP, Dinges MM, Stoehr JA, Harmala JW, et al. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect Immun. 1998;66(1):218–23.

    PubMed  CAS  Google Scholar 

  11. Schlievert PM, Chuang-Smith ON, Peterson ML, Cook LC, Dunny GM. Enterococcus faecalis endocarditis severity in rabbits is reduced by IgG Fabs interfering with aggregation substance. PLoS One. 2010;5(10):e13194.

    Google Scholar 

  12. Nallapareddy SR, Singh KV, Murray BE. Contribution of the collagen adhesin Acm to pathogenesis of Enterococcus faecium in experimental endocarditis. Infect Immun. 2008;76(9):4120–8.

    PubMed  CAS  Google Scholar 

  13. Singh KV, Nallapareddy SR, Sillanpää J, Murray BE. Importance of the collagen adhesin ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLoS Pathog. 2010;6(1):e1000716.

    PubMed  Google Scholar 

  14. Heikens E, Bonten MJ, Willems RJ. Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol. 2007;189:8233–40.

    PubMed  CAS  Google Scholar 

  15. Heikens E, Singh KV, Jacques-Palaz KD, van Luit Asbroek M, Oostdijk EA, Bonten MJ, et al. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect. 2011;13(14-15):1185–90.

    PubMed  CAS  Google Scholar 

  16. Kemp KD, Singh KV, Nallapareddy SR, Murray BE. Relative contributions of Enterococcus faecalis OG1RF sortase-encoding genes, srtA and bps (srtC), to biofilm formation and a murine model of urinary tract infection. Infect Immun. 2007;75(11):5399–404.

    PubMed  CAS  Google Scholar 

  17. Nallapareddy SR, Singh KV, Sillanpää J, Zhao M, Murray BE. Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect Immun. 2011;79(7):2901–10.

    PubMed  CAS  Google Scholar 

  18. Nallapareddy SR, Singh KV, Sillanpää J, Garsin DA, Höök M, Erlandsen SL, et al. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Cl in Invest. 2006;116(10):2799–807.

    CAS  Google Scholar 

  19. Sillanpää J, Nallapareddy SR, Singh KV, Prakash VP, Fothergill T, Ton-That H, et al. Characterizationof the ebp(fm) pilus-encoding operon of Enterococcus faecium and its role in biofilm formation and virulence in a murine model of urinary tract infection. Virulence. 2010;1(4):236–46.

    PubMed  Google Scholar 

  20. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, et al. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother. 1993;37(11):2474–7.

    PubMed  CAS  Google Scholar 

  21. Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE. A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol. 2009;72(4):1022–36.

    PubMed  CAS  Google Scholar 

  22. Singh KV, Nallapareddy SR, Nannini EC, Murray BE. Fsr independent production of protease(s) may explain the lack of attenuation of an Enterococcus faecalis fsr mutant versus a gelE-sprE mutant in induction of endocarditis. Infect Immun. 2005;73(8):4888–94.

    PubMed  CAS  Google Scholar 

  23. Thurlow LR, Thomas VC, Narayanan S, Olson S, Fleming SD, Hancock LE. Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect Immun. 2010;78(11):4936–43.

    PubMed  CAS  Google Scholar 

  24. Nannini EC, Teng F, Singh KV, Murray BE. Decreased virulence of a gls24 mutant of Enterococcus faecalis OG1RF in an experimental endocarditis model. Infect Immun. 2005;73(11):7772–4.

    PubMed  CAS  Google Scholar 

  25. Murdoch DR, Corey GR, Hoen B, Miró JM, Fowler Jr VG, Bayer AS, et al. International Collaboration on Endocarditis-Prospective Cohort Study (ICE-PCS) Investigators. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med. 2009;169(5):463–73.

    PubMed  Google Scholar 

  26. Bouza E, Menasalvas A, Muñoz P, Vasallo FJ, del Mar Moreno M, García Fernández MA. Infective endocarditis--a prospective study at the end of the twentieth century: new predisposing conditions, new etiologic agents, and still a high mortality. Medicine (Baltimore). 2001;80(5):298–307.

    CAS  Google Scholar 

  27. Hill EE, Herijgers P, Claus P, Vanderschueren S, Herregods MC, Peetermans WE. Infective endocarditis: changing epidemiology and predictors of 6-month mortality: a prospective cohort study. Eur Heart J. 2007;28(2):196–203.

    PubMed  Google Scholar 

  28. Alonso-Valle H, Fariñas-Alvarez C, Bernal-Marco JM, García-Palomo JD, Gutiérrez-Díez F, Martín Durán R, de Berrazueta JR, González-Macías J, Revuelta-Soba JM, Fariñas MC. The changing face of prosthetic valve endocarditis at a tertiary-care hospital: 1986-2005. Rev Esp Cardiol. 2010;63(1):28–35.

    PubMed  Google Scholar 

  29. Fernández-Hidalgo N, Almirante B, Tornos P, Pigrau C, Sambola A, Igual A, et al. Contemporary epidemiology and prognosis of health care-associated infective endocarditis. Clin Infect Dis. 2008;47(10):1287–97.

    PubMed  Google Scholar 

  30. Benito N, Miró JM, de Lazzari E, Cabell CH, del Río A, Altclas J, et al. Health care-associated native valve endocarditis: importance of non-nosocomial acquisition. Ann Intern Med. 2009;150(9):586–94.

    PubMed  Google Scholar 

  31. Sy RW, Kritharides L. Health care exposure and age in infective endocarditis: results of a contemporary population-based profile of 1536 patients in Australia. Eur Heart J. 2010;31(15):1890–7.

    PubMed  Google Scholar 

  32. Hidron AI, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008;29:996–1011.

    PubMed  Google Scholar 

  33. Maki DG, Agger WA. Enterococcal bacteremia: clinical features, the risk of endocarditis, and management. Medicine (Baltimore). 1988;67(4):248–69.

    CAS  Google Scholar 

  34. Fernández-Guerrero ML, Herrero L, Bellver M, Gadea I, Roblas RF, de Górgolas M. Nosocomial enterococcal endocarditis: a serious hazard for hospitalized patients with enterococcal bacteraemia. J Intern Med. 2002;252(6):510–5.

    PubMed  Google Scholar 

  35. Megran DW. Enterococcal endocarditis. Clin Infect Dis. 1992;15(1):63–71.

    PubMed  CAS  Google Scholar 

  36. Anderson DJ, Murdoch DR, Sexton DJ, Reller LB, Stout JE, Cabell CH, et al. Risk factors for infective endocarditis in patients with enterococcal bacteremia: a case-control study. Infection. 2004;32(2):72–7.

    PubMed  CAS  Google Scholar 

  37. Fernández Guerrero ML, Goyenechea A, Verdejo C, Roblas RF, de Górgolas M. Enterococcal endocarditis on native and prosthetic valves: a review of clinical and prognostic factors with emphasis on hospital-acquired infections as a major determinant of outcome. Medicine (Baltimore). 2007;86(6):363–77.

    Google Scholar 

  38. Rice LB, Calderwood SB, Eliopoulos GM, Farber BF, Karchmer AW. Enterococcal endocarditis: a comparison of prosthetic and native valve disease. Rev Infect Dis. 1991;13(1):1–7.

    PubMed  CAS  Google Scholar 

  39. Martínez-Odriozola P, Muñoz-Sánchez J, Gutiérrez-Macías A, Arriola-Martínez P, Montero-Aparicio E, Ezpeleta Baquedano C, et al. [An analysis of 182 enterococcal bloodstream infections: epidemiology, microbiology, and outcome]. Enferm Infecc Microbiol Clin. 2007;25(8):503–7.

    PubMed  Google Scholar 

  40. Poh CH, Oh HM, Tan AL. Epidemiology and clinical outcome of enterococcal bacteraemia in an acute care hospital. J Infect. 2006;52(5):383–6.

    PubMed  CAS  Google Scholar 

  41. McDonald JR, Olaison L, Anderson DJ, Hoen B, Miro JM, Eykyn S, et al. Enterococcal endocarditis: 107 cases from the international collaboration on endocarditis merged database. Am J Med. 2005;118(7):759–66.

    PubMed  CAS  Google Scholar 

  42. Vijayvargiya R, Veis JH. Antibiotic-resistant endocarditis in a hemodialysis patient. J Am Soc Nephrol. 1996;7(4):536–42.

    PubMed  CAS  Google Scholar 

  43. Bishara J, Sagie A, Samra Z, Pitlik S. Polymicrobial endocarditis caused by methicillin-resistant Staphylococcus aureus and glycopeptide-resistant enterococci. Eur J Clin Microbiol Infect Dis. 1999;18(9):674–5.

    PubMed  CAS  Google Scholar 

  44. Stevens MP, Edmond MB. Endocarditis due to vancomycin-resistant enterococci: case report and review of the literature. Clin Infect Dis. 2005;41(8):1134–42.

    PubMed  Google Scholar 

  45. Forrest GN, Arnold RS, Gammie JS, Gilliam BL. Single center experience of a vancomycin resistant enterococcal endocarditis cohort. J Infect. 2011;63(6):420–8.

    PubMed  Google Scholar 

  46. Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 1990;3:46–65.

    PubMed  CAS  Google Scholar 

  47. Robbins WC, Tompsett R. Treatment of enterococcal endocarditis and bacteremia; results of combined therapy with penicillin and streptomycin. Am J Med. 1951;10(3):278–99.

    PubMed  CAS  Google Scholar 

  48. Jawetz E, Gunnison JB, Coleman VR. The combined action of penicillin with streptomycin or chloromycetin on enterococci in vitro. Science. 1950;111(2880):254–6.

    PubMed  CAS  Google Scholar 

  49. Wright AJ, Wilson WR, Matsumoto JY, Washington 2nd JA, Geraci JE. Influence of gentamicin dose size on the efficacies of combinations of gentamicin and penicillin in experimental streptomycin-resistant enterococcal endocarditis. Antimicrob Agents Chemother. 1982;22(6):972–5.

    PubMed  CAS  Google Scholar 

  50. Wilson WR, Wilkowske CJ, Wright AJ, Sande MA, Geraci JE. Treatment of streptomycin-susceptible and streptomycin-resistant enterococcal endocarditis. Ann Intern Med. 1984;100(6):816–23.

    PubMed  CAS  Google Scholar 

  51. Serra P, Brandimarte C, Martino P, Carlone S, Giunchi G. Synergistic treatment of enterococcal endocarditis: in vitro and in vivo studies. Arch Intern Med. 1977;137(11):1562–7.

    PubMed  CAS  Google Scholar 

  52. Baddour LM, Wilson WR, Bayer AS, Fowler Jr VG, Bolger AF, Levison ME, et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005;111(23):e394–434.

    PubMed  Google Scholar 

  53. Murray BE. Beta-lactamase-producing enterococci. Antimicrob Agents Chemother. 1992;36(11):2355–9.

    PubMed  CAS  Google Scholar 

  54. Eliopoulos GM, Farber BF, Murray BE, Wennersten C, Moellering Jr RC. Ribosomal resistance of clinical enterococcal to streptomycin isolates. Antimicrob Agents Chemother. 1984;25(3):398–9.

    PubMed  CAS  Google Scholar 

  55. Mainardi JL, Gutmann L, Acar JF, Goldstein FW. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob Agents Chemother. 1995;39(9):1984–7.

    PubMed  CAS  Google Scholar 

  56. Gavaldà J, Torres C, Tenorio C, López P, Zaragoza M, Capdevila JA, et al. Efficacy of ampicillin plus ceftriaxone in treatment of experimental endocarditis due to Enterococcus faecalis strains highly resistant to aminoglycosides. Antimicrob Agents Chemother. 1999;43(3):639–46.

    PubMed  Google Scholar 

  57. • Gavaldà J, Len O, Miró JM, Muñoz P, Montejo M, Alarcón A, et al. Brief communication: treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone. Ann Intern Med. 2007;146(8):574–9. This multicenter, non-randomized, open-label study evaluates the combination of ceftriaxone plus ampicillin in the treatment of E. faecalis endocarditis, particularly important in the setting of high-level resistance to aminoglycosides.

    PubMed  Google Scholar 

  58. Antony SJ, Ladner J, Stratton CW, Raudales F, Dummer SJ. High-level aminoglycoside-resistant enterococcus causing endocarditis successfully treated with a combination of ampicillin, imipenem and vancomycin. Scand J Infect Dis. 1997;29(6):628–30.

    PubMed  CAS  Google Scholar 

  59. Tripodi MF, Locatelli A, Adinolfi LE, Andreana A, Utili R. Successful treatment with ampicillin and fluoroquinolones of human endocarditis due to high-level gentamicin-resistant enterococci. Eur J Clin Microbiol Infect Dis. 1998;17(10):734–6.

    PubMed  CAS  Google Scholar 

  60. Rice LB, Bellais S, Carias LL, Hutton-Thomas R, Bonomo RA, Caspers P, et al. Impact of specific pbp5 mutations on expression of beta-lactam resistance in Enterococcus faecium. Antimicrob Agents Chemother. 2004;48(8):3028–32.

    PubMed  CAS  Google Scholar 

  61. Murray BE. Vancomycin-resistant enterococcal infections. N Engl J Med. 2000;10:710–21.

    Google Scholar 

  62. Galloway-Peña JR, Nallapareddy SR, Arias CA, Eliopoulos GM, Murray BE. Analysis of clonality and antibiotic resistance among early clinical isolates of Enterococcus faecium in the United States. J Infect Dis. 2009;200(10):1566–73.

    PubMed  Google Scholar 

  63. Bryson HM, Spencer CM. Quinupristin-dalfopristin. Drugs. 1996;52(3):406–15.

    PubMed  CAS  Google Scholar 

  64. Linden PK, Moellering Jr RC, Wood CA, Rehm SJ, Flaherty J, Bompart F, et al. Treatment of vancomycin-resistant Enterococcus faecium infections with quinupristin/dalfopristin. Clin Infect Dis. 2001;33(11):1816–23.

    PubMed  CAS  Google Scholar 

  65. Moellering RC, Linden PK, Reinhardt J, Blumberg EA, Bompart F, Talbot GH. The efficacy and safety of quinupristin/dalfopristin for the treatment of infections caused by vancomycin-resistant Enterococcus faecium. Synercid Emergency-Use Study Group. J Antimicrob Chemother. 1999;44(2):251–61.

    PubMed  CAS  Google Scholar 

  66. Linden PK. Optimizing therapy for vancomycin-resistant enterococci (VRE). Semin Respir Crit Care Med. 2007;28(6):632–45.

    PubMed  Google Scholar 

  67. Olsen KM, Rebuck JA, Rupp ME. Arthralgias and myalgias related to quinupristin-dalfopristin administration. Clin Infect Dis. 2001;32:e83–6.

    PubMed  CAS  Google Scholar 

  68. •• Arias CA, Murray BE. Emergence and management of drug resistant enterococcal infections. Expert Rev Anti Infect Ther. 2008;6(5):637–55. Extensive review of the treatment options for enterococcal infections, with particular emphasis in multi-drug resistant isolates.

    PubMed  CAS  Google Scholar 

  69. Fantin B, Leclercq R, Garry L, Carbon C. Influence of inducible cross-resistance to macrolides, lincosamides, and streptogramin B-type antibiotics in Enterococcus faecium on activity of quinupristin-dalfopristin in vitro and in rabbits with experimental endocarditis. Antimicrob Agents Chemother. 1997;41(5):931–5.

    PubMed  CAS  Google Scholar 

  70. Pérez Salmerón J, Martínez García F, Roldán Conesa D, Lorente Salinas I, López Fornás F, Ruiz Gómez J, et al. Comparative study of treatment with quinupristin dalfopristin alone or in combination with gentamicin, teicoplanin, imipenem or levofloxacin in experimental endocarditis due to a multidrug-resistant Enterococcus faecium. Rev Esp Quimioter. 2006;19(3):258–66.

    PubMed  Google Scholar 

  71. Matsumura S, Simor AE. Treatment of endocarditis due to vancomycin-resistant Enterococcus faecium with quinupristin/dalfopristin, doxycycline, and rifampin: a synergistic drug combination. Clin Infect Dis. 1998;27(6):1554–6.

    PubMed  CAS  Google Scholar 

  72. Bethea JA, Walko CM, Targos PA. Treatment of vancomycin-resistant enterococcus with quinupristin/dalfopristin and high-dose ampicillin. Ann Pharmacother. 2004;38(6):989–91.

    PubMed  Google Scholar 

  73. Thompson RL, Lavin B, Talbot GH. Endocarditis due to vancomycin-resistant Enterococcus faecium in an immunocompromised patient: cure by administering combination therapy with quinupristin/dalfopristin and high-dose ampicillin. South Med J. 2003;96(8):818–20.

    PubMed  Google Scholar 

  74. Herrero IA, Issa NC, Patel R. Nosocomial spread of linezolid-resistant, vancomycin-resistant Enterococcus faecium. N Engl J Med. 2002;346(11):867–9.

    PubMed  Google Scholar 

  75. Arias CA, Vallejo M, Reyes J, Panesso D, Moreno J, Castañeda E, et al. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23 S rRNA methyltransferase. J Clin Microbiol. 2008;46(3):892–6.

    PubMed  CAS  Google Scholar 

  76. Diaz L, Kiratisin P, Mendes R, Panesso D, Singh K, Arias CA. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. April 01 2012. Accepted for publication in AAC

  77. Birmingham MC, Rayner CR, Meagher AK, Flavin SM, Batts DH, Schentag JJ. Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis. 2003;36(2):159–68.

    PubMed  CAS  Google Scholar 

  78. Falagas ME, Manta KG, Ntziora F, Vardakas KZ. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J Antimicrob Chemother. 2006;58(2):273–80.

    PubMed  CAS  Google Scholar 

  79. Hamza N, Ortiz J, Bonomo RA. Isolated pulmonic valve infective endocarditis: a persistent challenge. Infection. 2004;32(3):170–5.

    PubMed  CAS  Google Scholar 

  80. Zimmer SM, Caliendo AM, Thigpen MC, Somani J. Failure of linezolid treatment for enterococcal endocarditis. Clin Infect Dis. 2003;37(3):e29–30.

    PubMed  CAS  Google Scholar 

  81. Rao N, White GJ. Successful treatment of Enterococcus faecalis prosthetic valve endocarditis with linezolid. Clin Infect Dis. 2002;35(7):902–4.

    PubMed  Google Scholar 

  82. Wareham DW, Abbas H, Karcher AM, Das SS. Treatment of prosthetic valve infective endocarditis due to multi resistant Gram-positive bacteria with linezolid. J Infect. 2006;52(4):300–4.

    PubMed  CAS  Google Scholar 

  83. Babcock HM, Ritchie DJ, Christiansen E, Starlin R, Little R, Stanley S. Successful treatment of vancomycin-resistant Enterococcus endocarditis with oral linezolid. Clin Infect Dis. 2001;32(9):1373–5.

    PubMed  CAS  Google Scholar 

  84. Ang JY, Lua JL, Turner DR, Asmar BI. Vancomycin resistant Enterococcus faecium endocarditis in a premature infant successfully treated with linezolid. Pediatr Infect Dis J. 2003;22(12):1101–3.

    PubMed  Google Scholar 

  85. Archuleta S, Murphy B, Keller MJ. Successful treatment of vancomycin-resistant Enterococcus faecium endocarditis with linezolid in a renal transplant recipient with human immunodeficiency virus infection. Transpl Infect Dis. 2004;6(3):117–9.

    PubMed  CAS  Google Scholar 

  86. Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Clin Infect Dis. 2000;30(1):146–51.

    PubMed  CAS  Google Scholar 

  87. Tsigrelis C, Singh KV, Coutinho TD, Murray BE, Baddour LM. Vancomycin-resistant Enterococcus faecalis endocarditis: linezolid failure and strain characterization of virulence factors. J Clin Microbiol. 2007;45(2):631–5.

    PubMed  CAS  Google Scholar 

  88. Berdal JE, Eskesen A. Short-term success, but long term treatment failure with linezolid for enterococcal endocarditis. Scand J Infect Dis. 2008;40(9):765–6.

    PubMed  Google Scholar 

  89. Schwartz BS, Ngo PD, Guglielmo BJ. Daptomycin treatment failure for vancomycin-resistant Enterococcus faecium infective endocarditis: impact of protein binding? Ann Pharmacother. 2008;42(2):289–90.

    PubMed  Google Scholar 

  90. Carpenter CF, Chambers HF. Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin Infect Dis. 2004;38(7):994–1000.

    PubMed  CAS  Google Scholar 

  91. Kamboj M, Cohen N, Gilhuley K, Babady NE, Seo SK, Sepkowitz KA. Emergence of daptomycin-resistant VRE: experience of a single institution. Infect Control Hosp Epidemiol. 2011;32(4):391–4.

    PubMed  Google Scholar 

  92. Kelesidis T, Humphries R, Uslan DZ, Pegues DA. Daptomycin nonsusceptible enterococci: an emerging challenge for clinicians. Clin Infect Dis. 2011;52(2):228–34.

    PubMed  Google Scholar 

  93. • Arias CA, Panesso D, McGrath DM, Qin X, Mojica MF, Miller C, et al. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med. 2011;365(10):892–900. In this paper novel genes involved in in vivo enterococcal daptomycin non-susceptibility are identified.

    PubMed  CAS  Google Scholar 

  94. Palmer KL, Daniel A, Hardy C, Silverman J, Gilmore MS. Genetic basis for daptomycin resistance in enterococci. Antimicrob Agents Chemother. 2011;55(7):3345–56.

    PubMed  CAS  Google Scholar 

  95. Caron F, Kitzis MD, Gutmann L, Cremieux AC, Maziere B, Vallois JM, et al. Daptomycin or teicoplanin in combination with gentamicin for treatment of experimental endocarditis due to a highly glycopeptide-resistant isolate of Enterococcus faecium. Antimicrob Agents Chemother. 1992;36(12):2611–6.

    PubMed  CAS  Google Scholar 

  96. Cha R, Rybak MJ. Daptomycin against multiple drug resistant staphylococcus and enterococcus isolates in an in vitro pharmacodynamic model with simulated endocardial vegetations. Diagn Microbiol Infect Dis. 2003;47(3):539–46.

    PubMed  CAS  Google Scholar 

  97. Vouillamoz J, Moreillon P, Giddey M, Entenza JM. Efficacy of daptomycin in the treatment of experimental endocarditis due to susceptible and multidrug-resistant enterococci. J Antimicrob Chemother. 2006;58(6):1208–14.

    PubMed  CAS  Google Scholar 

  98. Ramos MC, Grayson ML, Eliopoulos GM, Bayer AS. Comparison of daptomycin, vancomycin, and ampicillin gentamicin for treatment of experimental endocarditis caused by penicillin-resistant enterococci. Antimicrob Agents Chemother. 1992;36(9):1864–9.

    PubMed  CAS  Google Scholar 

  99. Cervera C, Castañeda X, Pericas JM, Del Río A, de la Maria CG, Mestres C, et al. Clinical utility of daptomycin in infective endocarditis caused by Gram-positive cocci. Int J Antimicrob Agents. 2011;38(5):365–70.

    PubMed  CAS  Google Scholar 

  100. Jenkins I. Linezolid- and vancomycin-resistant Enterococcus faecium endocarditis: successful treatment with tigecycline and daptomycin. J Hosp Med. 2007;2(5):343–4.

    PubMed  Google Scholar 

  101. Polidori M, Nuccorini A, Tascini C, Gemignani G, Iapoce R, Leonildi A, et al. Vancomycin-resistant Enterococcus faecium (VRE) bacteremia in infective endocarditis successfully treated with combination daptomycin and tigecycline. J Chemother. 2011;23(4):240–1.

    PubMed  CAS  Google Scholar 

  102. Schutt AC, Bohm NM. Multidrug-resistant Enterococcus faecium endocarditis treated with combination tigecycline and high-dose daptomycin. Ann Pharmacother. 2009;43(12):2108–12.

    PubMed  Google Scholar 

  103. Arias CA, Torres HA, Singh KV, Panesso D, Moore J, Wanger A, et al. Failure of daptomycin monotherapy for endocarditis caused by an Enterococcus faecium strain with vancomycin-resistant and vancomycin-susceptible subpopulations and evidence of in vivo loss of the vanA gene cluster. Clin Infect Dis. 2007;45(10):1343–6.

    PubMed  CAS  Google Scholar 

  104. • Sakoulas G, Bayer AS, Pogliano J, Tsuji BT, Yang SJ, Mishra NN, et al. Ampicillin enhances daptomycin- and cationic host defense peptide mediated killing of ampicillin- and vancomycin resistant Enterococcus faecium. Antimicrob Agents Chemother. 2012;56(2):838–44. The authors report in vitro and in vivo synergism between daptomycin and ampicillin for the treatment of a patient with endocarditis due to a VRE faecium, despite the fact that the isolate had high-level of resistance to ampicillin.

    PubMed  Google Scholar 

  105. Beneri CA, Nicolau DP, Seiden HS, Rubin LG. Successful treatment of a neonate with persistent vancomycin resistant enterococcal bacteremia with a daptomycin-containing regimen. Infect Drug Resist. 2008;1:9–11.

    PubMed  CAS  Google Scholar 

  106. Lee BL, Sachdeva M, Chambers HF. Effect of protein binding of daptomycin on MIC and antibacterial activity. Antimicrob Agents Chemother. 1991;35(12):2505–8.

    PubMed  CAS  Google Scholar 

  107. Hall AD, Steed ME, Arias CA, Murray BE, Rybak MJ. Evaluation of Standard and High-Dose Daptomycin versus Linezolid against Vancomycin-Resistant Enterococcus in a Simulated Endocardial Vegetations (SEV) in vitro Pharmacokinetic/Pharmacodynamic model. Antimicrob Agents Chemother. 2012 Apr 2. [Epub ahead of print] PubMed PMID: 22470111.

  108. Streit JM, Jones RN, Sader HS. Daptomycin activity and spectrum: a worldwide sample of 6737 clinical Gram positive organisms. J Antimicrob Chemother. 2004;53(4):669–74.

    PubMed  CAS  Google Scholar 

  109. Rose WE, Rybak MJ. Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy. 2006;26(8):1099–110.

    PubMed  CAS  Google Scholar 

  110. Werner G, Gfrörer S, Fleige C, Witte W, Klare I. Tigecycline-resistant Enterococcus faecalis strain isolated from a German intensive care unit patient. J Antimicrob Chemother. 2008;61(5):1182–3.

    PubMed  CAS  Google Scholar 

  111. Freitas AR, Novais C, Correia R, Monteiro M, Coque TM, Peixe L. Non-susceptibility to tigecycline in enterococci from hospitalised patients, food products and community sources. Int J Antimicrob Agents. 2011;38(2):174–6.

    PubMed  CAS  Google Scholar 

  112. Murphy TM, Deitz JM, Petersen PJ, Mikels SM, Weiss WJ. Therapeutic efficacy of GAR-936, a novel glycylcycline, in a rat model of experimental endocarditis. Antimicrob Agents Chemother. 2000;44(11):3022–7.

    PubMed  CAS  Google Scholar 

  113. Lefort A, Lafaurie M, Massias L, Petegnief Y, Saleh-Mghir A, Muller-Serieys C, et al. Activity and diffusion of tigecycline (GAR-936) in experimental enterococcal endocarditis. Antimicrob Agents Chemother. 2003;47(1):216–22.

    PubMed  CAS  Google Scholar 

  114. Entenza JM, Moreillon P. Tigecycline in combination with other antimicrobials: a review of in vitro, animal and case report studies. Int J Antimicrob Agents. 2009;34(1):8.e1–9.

    CAS  Google Scholar 

Download references

Disclosure

Dr. C. Arias has worked as a consultant for Pfizer, Inc and Cubist, Inc, and is an employee of the University of Texas Health Science Center. He has grants or grants pending from Pfizer, Inc; Forrest Pharmaceuticals and Theravance, Inc, and has received payment for lectures from Pfizer, Inc and Novartis, Royalties from UptoDate, payment for development of educational presentations from the University of Texas Medical Branch, travel/accommodation expenses from the Columbian Society for Infectious Diseases, 5th Symposium for Antimicrobial Resistance, Colombia, American Society for Microbiology, European Society for Clinical Microbiology and Infectious Diseases, Latin American Society for Pediatric Infectious Diseases, Latin American Society for Pediatric Infectious Diseases, European Society for Clinical Microbiology and Infectious Diseases, 6th Symposium on Antimicrobial Resistance, Colombia, Cold Spring Harbor Laboratory/Wellcome Trust, Caribbean Association of Clinical Microbiologists (CACM), Chilean Infectious Diseases Society, and the 7th Symposium on Antimicrobial Resistance, Colombia; Dr. Murray is vice president of IDSA, a consultant for Pfizer, Rib-X, Durata Therapeutics, Achaogen, The Medicines Co., and GlaxoSmithKline. She is an employee of The University of Texas Health Science Center at Houston, and has had grants or grants pending from NIH, Johnson & Johnson, Intercell, Astellas, Johnson & Johnson, Cubist, Theravance, and Forest as well as payment for lectures from Christiana Hospital, Henry Ford Hospital, The Ottawa Hospital, Medical College of Wisconsin, Memorial Sloan Kettering Cancer Center, and Palm Beach Infectious Diseases Institute, and payment for manuscript preparation from NEJM, patents from Ace, royalties from Harrison’s, payment for development of educational presentations from Grant/Downing Education, and travel/accommodations support from PPD Development, LP and Henry M. Jackson Foundation, IDSA, IDSA, Eurofins Medinet (NARSA), Ohio State University, MCM Eventi e Congressi (ISCVID), ASM, and the European Food Safety Authority Advisory Board; Dr. J. Munita reported no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cesar A. Arias or Barbara E. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munita, J.M., Arias, C.A. & Murray, B.E. Enterococcal Endocarditis: Can We Win the War?. Curr Infect Dis Rep 14, 339–349 (2012). https://doi.org/10.1007/s11908-012-0270-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-012-0270-8

Keywords

Navigation