Skip to main content

Advertisement

Log in

A Clinician’s Guide to the Treatment of Vancomycin Resistant Enterococci Bacteremia and Endocarditis

  • Antimicrobial Stewardship (AL Pakyz, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Opinion statement

Treatment of serious enterococcal infections is often difficult due to the inherent high level of antimicrobial resistance seen among some species including a rising level of high level aminoglycoside resistance (HLAR), vancomycin resistance (VRE), and multidrug resistance. Prior to the turn of this century, therapeutic options were limited and relied primarily on the use of ampicillin, aminoglycosides, and vancomycin. Over the past two decades, treatment has changed with the introduction of new antimicrobials with activity against VRE and an increasing use of aminoglycoside sparing regimens including the use of ampicillin and ceftriaxone. For the treatment of ampicillin susceptible infections with or without the presence of HLAR, the combination of ampicillin and ceftriaxone is now the preferred regimen due to the lower risk of adverse reactions including nephrotoxicity. Among the two antibiotics recommended for VRE severe infections in the 2015 AHA/IDSA infective endocarditis guidelines, daptomycin and linezolid, there is ongoing debate about the merits of both due to concerns about perceived mortality differences, adverse drug reactions, and proper dosing. Given the bactericidal activity of daptomycin, we currently prefer this agent for the initial treatment of serious VRE infections with proper dosing of at least 8 mg/kg and up to 10–12 mg/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–86. Comprehensive review and recommendations endorsed by the IDSA regarding treatment of infectious endocarditis. Should be among the first reference sources used when treating infective endocarditis.

    Article  CAS  PubMed  Google Scholar 

  2. Vergis EN, Hayden MK, Chow JW, et al. Determinants of vancomycin resistance and mortality rates in enterococcal bacteremia. A prospective multicenter study. Ann Intern Med. 2001;135(7):484–92.

    Article  CAS  PubMed  Google Scholar 

  3. Garrison RN, Fry DE, Berberich S, et al. Enterococcal bacteremia: clinical implications and determinants of death. Ann Surg. 1982;196:43–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghanem G, Hachem R, Jiang Y, et al. Outcomes for and risk factors associated with vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium bacteremia in cancer patients. Infect Control Hosp Epidemiol. 2007;28:1054–9.

    Article  CAS  PubMed  Google Scholar 

  5. Balli EP, Venetis CA, Miyakis S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin resistant enterococcal bacteremia. Animicrob Agents Chemother. 2014;58(2):734–9.

    Article  Google Scholar 

  6. Salgado CD, Farr BM. Outcomes associated with vancomycin-resistant enterococci: a meta-analysis. Infect Control Hosp Epidemiol. 2003;24:690–8.

    Article  PubMed  Google Scholar 

  7. DiazGranados CA, Zimmer SM, Klein M, et al. Comparison of mortality associated with vancomycin-resistant and vancomycin-susceptible enterococcal bloodstream infections: a meta-analysis. Clin Infect Dis. 2005;41:327–33.

    Article  PubMed  Google Scholar 

  8. Ogawa T, Sato M, Yonekawa S, et al. Infective endocarditis caused by Enterococcus faecalis treated with continuous infusion of ampicillin without adjunctive aminoglycosides. Intern Med. 2013;52(10):1131–5.

    Article  PubMed  Google Scholar 

  9. Buchholtz K, Larsen CT, Hassager C, et al. Severity of gentamicin’s nephrotoxic effect on patients with infective endocarditis: a prospective observational cohort study of 373 patients. Clin Infect Dis. 2009;48(1):65–71.

    Article  PubMed  Google Scholar 

  10. Mainardi JL, Gutmann L, Acar JF, et al. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob Agents Chemother. 1995;39(9):1984–7. Erratum in: Antimicrob Agents Chemother 1995 Dec;39(12):2835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gavaldà J, Torres C, Tenorio C, López P, et al. Efficacy of ampicillin plus ceftriaxone in treatment of experimental endocarditis due to Enterococcus faecalis strains highly resistant to aminoglycosides. Antimicrob Agents Chemother. 1999;43:639–46.

    PubMed  PubMed Central  Google Scholar 

  12. Fernández-Hidalgo N, Almirante B, Gavaldà J, et al. Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating Enterococcus faecalis infective endocarditis. Clin Infect Dis. 2013;56:1261–8. Suggested that ampicillin-ceftriaxone was as effective as ampicillin-gentamicin with minimal risk of renal failure and regardless of presence of HLR to aminoglycosides.

    Article  PubMed  Google Scholar 

  13. Gavaldà J, Len O, Miró JM, et al. Brief communication: treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone. Ann Intern Med. 2007;146:574–9.

    Article  PubMed  Google Scholar 

  14. Pericas JM, Cervera C, del Rio A, et al. Hospital Clinic Endocarditis Study Group. Changes in the treatment of Enterococcus faecalis infective endocarditis in Spain in the last 15 years: from ampicillin plus gentamicin to ampicillin plus ceftriaxone. Clin Microbiol Infect. 2014;20(12):O1075-83. Retrospective study that showed ampicillin-ceftriaxone combination was safer than ampicillin-gentamicin with similar clinical outcomes, Basis for recommendation of dual beta lactam therapy (ampicillin-ceftriaxone).

    Article  PubMed  Google Scholar 

  15. Luther MK, Rice LB, LaPlante KL. Ampicillin in combination with ceftaroline, cefepime, or ceftriaxone demonstrates equivalent activities in a high-inoculum Enterococcus faecalis infection model. Antimicrob Agents Chemother. 2016;60(5):3178–82.

    Article  PubMed  Google Scholar 

  16. Galloway-Pena JR, Rice LB, Murray BE. Analysis of PBP5 of early U.S. isolates of Enterococcus faecium: sequence variation alone does not explain increasing ampicillin resistance over time. Antimicrob Agents Chemother. 2011;55:3272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. al-Obeid S, Gutmann L, Williamson R. Modification of penicillin-binding proteins of penicillin-resistant mutants of different species of enterococci. J Antimicrob Chemother. 1990;26:613–8.

    Article  CAS  PubMed  Google Scholar 

  18. Murray BE, Mederski-Samoraj B, Foster SK, et al. In vitro studies of plasmid-mediated penicillinase from Streptococcus faecalis suggest a staphylococcal origin. J Clin Invest. 1986;77:289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 18th informational supplement. M100-S18. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

    Google Scholar 

  20. Lavoie SR, Wong ES, Coudron PE, et al. Comparison of ampicillin-sulbactam with vancomycin for treatment of experimental endocarditis due to a beta-lactamase-producing, highly gentamicin-resistant isolate of Enterococcus faecalis. Antimicrob Agents Chemother. 1993;37(7):1447–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murray BE. Vancomycin-resistant enterococcal infections. N Engl J Med. 2000;342:710–21.

    Article  CAS  PubMed  Google Scholar 

  22. Mederski-Samoraj BD, Murray BE. High-level resistance to gentamicin in clinical isolates of enterococci. J Infect Dis. 1983;147:751–7.

    Article  CAS  PubMed  Google Scholar 

  23. Chuang YC, Wang JT, Lin HY, et al. Daptomycin versus linezolid for treatment of vancomycin-resistant enterococcal bacteremia: systematic review and meta-analysis. BMC Infect Dis. 2014;14:687.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Britt NS, Potter EM, Patel N, et al. Comparison of the effectiveness and safety of linezolid and daptomycin in vancomycin-resistant enterococcal bloodstream infection: a national cohort study of Veterans Affairs patients. Clin Infect Dis. 2015;61(6):871–8.

    Article  PubMed  Google Scholar 

  25. Patel K, Kabir R, Ahmad S, et al. Assessing outcomes of adult oncology patients treated with linezolid versus daptomycin for bacteremia due to vancomycin-resistant Enterococcus. J Oncol Pharm Pract. 2016;22(2):212–8.

    Article  PubMed  Google Scholar 

  26. Daptomycin for Vancomycin-Resistant Enterococcal Infection. A review of the clinical effectiveness, cost-effectiveness and guidelines [Internet], CADTH rapid response reports. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2016. Excellent analysis and summarization of recent comparison studies of linezolid and daptomycin.

    Google Scholar 

  27. Mohr JF, Friedrich LV, Yankelev S, et al. Daptomycin for the treatment of enterococcal bacteraemia: results from the Cubicin Outcomes Registry and Experience (CORE). Int J Antimicrob Agents. 2009;33(6):543–8.

    Article  CAS  PubMed  Google Scholar 

  28. Sakoulas G, Golan Y, Lamp KC, et al. Daptomycin in the treatment of bacteremia. Am J Med. 2007;120(10 Suppl 1):S21–7.

    Article  CAS  PubMed  Google Scholar 

  29. Segreti JA, Crank CW, Finney MS. Daptomycin for the treatment of gram-positive bacteremia and infective endocarditis: a retrospective case series of 31 patients. Pharmacotherapy. 2006;26(3):347–52.

    Article  CAS  PubMed  Google Scholar 

  30. Gallagher JC, Perez ME, Marino EA, et al. Daptomycin therapy for vancomycin resistant enterococcal bacteremia: a retrospective case series of 30 patients. Pharmacotherapy. 2009;29(7):792–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zasowski EJ, Claeys KC, Lagnf AM, et al. Time is of the essence: the impact of delayed antibiotic therapy on patient outcomes in hospital-onset enterococcal bloodstream infections. Clin Infect Dis. 2016;62(10):1242–50. Reinforces need for early, targeted, effective antibiotics when treating enterococcal bacteremia.

    Article  PubMed  Google Scholar 

  32. Anastasiou DM, Thorne GM, Luperchio SA, et al. In vitro activity of daptomycin against clinical isolates with reduced susceptibilities to linezolid and quinupristin/dalfopristin. Int J Antimicrob Agents. 2006;28(5):385–8.

    Article  CAS  PubMed  Google Scholar 

  33. Schriever CA, Fernandez C, Rodvold KA, et al. Daptomycin: a novel cyclic lipopeptide antimicrobial. Am J Health Syst Pharm. 2005;62(11):1145–58.

    CAS  PubMed  Google Scholar 

  34. Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother. 2004;48(1):63–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dandekar PK, Tessier PR, Williams P, et al. Pharmacodynamic profile of daptomycin against Enterococcus species and methicillin-resistant Staphylococcus aureus in a murine thigh infection model. J Antimicrob Chemother. 2003;52:405–11.

    Article  CAS  PubMed  Google Scholar 

  36. Hall AD, Steed ME, Arias CA, et al. Evaluation of standard- and high-dose daptomycin versus linezolid against vancomycin-resistant Enterococcus isolates in an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother. 2012;56(6):3174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Casapao AM, Kullar R, Davis SL, et al. Multicenter study of high-dose daptomycin for treatment of enterococcal infections. Antimicrob Agents Chemother. 2013;57(9):4190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pfaller MA, Sader HS, Jones RN. Evaluation of the in vitro activity of daptomycin against 19615 clinical isolates of Gram-positive cocci collected in North American hospitals (2002–2005). Diagn Microbiol Infect Dis. 2007;57(4):459–65.

    Article  CAS  PubMed  Google Scholar 

  39. Sader HS, Farrell DJ, Flamm RK, et al. Daptomycin activity tested against 164457 bacterial isolates from hospitalised patients: summary of 8 years of a Worldwide Surveillance Programme (2005–2012). Int J Antimicrob Agents. 2014;43(5):465–9.

    Article  CAS  PubMed  Google Scholar 

  40. Judge T, Pogue JM, Marchaim D, et al. Epidemiology of vancomycin-resistant enterococci with reduced susceptibility to daptomycin. Infect Control Hosp Epidemiol. 2012;33(12):1250–4.

    Article  PubMed  Google Scholar 

  41. Kamboj M, Cohen N, Gilhuley K, et al. Emergence of daptomycin-resistant VRE: experience of a single institution. Infect Control Hosp Epidemiol. 2011;32(4):391–4.

    Article  PubMed  PubMed Central  Google Scholar 

  42. King ST, Usery JB, Holloway K, et al. Successful therapy of treatment-emergent, non-clonal daptomycin-non-susceptible Enterococcus faecium infections. J Antimicrob Chemother. 2011;66(11):2673–5.

    Article  CAS  PubMed  Google Scholar 

  43. Lesho EP, Wortmann GW, Craft D, et al. De novo daptomycin nonsusceptibility in a clinical isolate. J Clin Microbiol. 2006;44:673.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Werth BJ, Steed ME, Ireland CE, et al. Defining daptomycin resistance prevention exposures in vancomycin-resistant Enterococcus faecium and E. faecalis. Antimicrob Agents Chemother. 2014;58(9):5253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cubicin® (daptomycin) [product information]. Lexington, MA: Cubist Pharmaceuticals; 2010.

  46. Zyvox® (linezolid) [product information]. New York, NY: Pfizer, Inc.; 2007

  47. Baltch AL, Smith RP, Ritz WJ, et al. Comparison of inhibitory and bactericidal activities and postantibiotic effects of LY333328 and ampicillin used singly and in combination against vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 1998;42(10):2564–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Birmingham MC, Rayner CR, Meagher AK, Flavin SM, Batts DH, Schentag JJ. Linezolid for the treatment of multidrug-resistant, Gram-positive infections experience from a compassionate-use program. Clin Infect Dis. 2003;36(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  49. Falagas ME, Siempos II, Vardakas KZ. Linezolid versus glycopeptide or beta-lactam for treatment of gram-positive bacterial infections: meta-analysis of randomised controlled trials. Lancet Infect Dis. 2008;8:53–66.

    Article  CAS  PubMed  Google Scholar 

  50. Noskin GA, Siddiqui F, Stosor V, et al. Successful treatment of persistent vancomycin-resistant Enterococcus faecium bacteremia with linezolid and gentamicin. Clin Infect Dis. 1999;28(3):689–90.

    Article  CAS  PubMed  Google Scholar 

  51. Tsigrelis C, Singh KV, Coutinho TD, et al. Vancomycin-resistant Enterococcus faecalis endocarditis: linezolid failure and strain characterization of virulence factors. J Clin Microbiol. 2007;45(2):631–5.

    Article  CAS  PubMed  Google Scholar 

  52. Mendes RE, Flamm RK, Hogan PA, et al. Summary of linezolid activity and resistance mechanisms detected during the 2012 LEADER surveillance program for the United States. Antimicrob Agents Chemother. 2014;58(2):1243–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Meka VG, Gold HS. Antimicrobial resistance to linezolid. Clin Infect Dis. 2004;39(7):1010–5.

    Article  CAS  PubMed  Google Scholar 

  54. Pogue JM, Patterson DL, Pasculle AW, et al. Determination of risk factors associated with isolation of linezolid-resistant strains of vancomycin-resistant Enterococcus. Infect Control Hosp Epidemiol. 2007;28(12):1382–8.

    Article  PubMed  Google Scholar 

  55. McGregor JC, Hartung DM, Allen GP, et al. Risk factors associated with linezolid-non-susceptible enterococcal infections. Am J Infect Control. 2012;40(9):886–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nicas TI, Mullen DL, Flokowitsch JE, et al. Semisynthetic glycopeptide antibiotics derived from LY264826 active against vancomycin-resistant enterococci. Antimicrob Agents Chemother. 1996;40:2194–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Morrissey I, Seifert H, Canton R, et al. Activity of oritavancin against methicillin-resistant staphylococci, vancomycin-resistant enterococci and beta-haemolytic streptococci collected from western European countries in 2011. J Antimicrob Chemother. 2013;68(1):164–7.

    Article  CAS  PubMed  Google Scholar 

  58. Zhanel GG, Calic D, Schweizer F, et al. New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs. 2010;70(7):859–86.

    Article  CAS  PubMed  Google Scholar 

  59. Corey GR, Kabler H, Mehra P, et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med. 2014;370:2180–90.

    Article  PubMed  Google Scholar 

  60. Rubino CM, Van Wart SA, Bhavnani SM, et al. Oritavancin population pharmacokinetics in healthy subjects and patients with complicated skin and skin structure infections or bacteremia. Antimicrob Agents Chemother. 2009;53(10):4422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rybak JM, Marx K, Martin CA. Early experience with tedizolid: clinical efficacy, pharmacodynamics, and resistance. Pharmacotherapy. 2014;34(11):1198–208.

    Article  CAS  PubMed  Google Scholar 

  62. Zurenko G, Bien P, Bensaci M, et al. Use of linezolid susceptibility of Gram-positive pathogens to tedizolid, a novel oxazolidinone. Ann Clin Microbiol Antimicrob. 2014;13:46.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brown SD, Traczewski MM. Comparative in vitro activities of torezolid (TR-700), the active moiety of a new oxazolidinone, torezolid phosphate (TR-701), determination of tentative disk diffusion interpretive criteria, and quality control ranges. Antimicrob Agents Chemother. 2010;54(5):2063–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shaw KJ, Poppe S, Schaadt R, et al. In vitro activity of TR-700, the antibacterial moiety of the prodrug TR-701, against linezolid-resistant strains. Antimicrob Agents Chemother. 2008;52(12):4442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Livermore DM, Mushtaq S, Warner M, et al. Activity of oxazolidinone TR-700 against linezolid-susceptible and -resistant staphylococci and enterococci. J Antimicrob Chemother. 2009;63(4):713–5.

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez-Avial I, Culebras E, Betriu C, et al. In vitro activity of tedizolid (TR-700) against linezolid-resistant staphylococci. J Antimicrob Chemother. 2012;67(1):167–9.

    Article  CAS  PubMed  Google Scholar 

  67. Flanagan S, Minassian SL, Morris D, et al. Pharmacokinetics of tedizolid in subjects with renal or hepatic impairment. Antimicrob Agents Chemother. 2014;58(11):6471–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ong V, Flanagan S, Fang E, et al. Absorption, distribution, metabolism and excretion of the novel antibacterial prodrug tedizolid phosphate. Drug Metab Dispos. 2014;42(8):1275–84.

    Article  PubMed  Google Scholar 

  69. Fuller RE, Drew RH, Perfect JR. Treatment of vancomycin-resistant enterococci, with a focus on quinupristin-dalfopristin. Pharmacotherapy. 1996;16(4):584–92.

    CAS  PubMed  Google Scholar 

  70. Malbruny B, Canu A, Bozdogan B, et al. Resistance to quinupristin-dalfopristin due to mutation of L22 ribosomal protein in Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(7):2200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh KV, Instock GM, Murray BE. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother. 2002;46(6):1845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moellering RC, Linden PK, Reinhardt J, et al. The efficacy and safety of quinupristin-dalfopristin for the treatment of infections caused by vancomycin-resistant Enterococcus faecium. Synercid Emergency-Use Study Group. J Antimicrob Chemother. 1999;44:251–61.

    Article  CAS  PubMed  Google Scholar 

  73. Synercid I.V. ® (quinupristin-dalfopristin) [product information]. Bristol, TNL Monarch Pharmaceuticals; 2011

  74. Tygacil® (tigecycline) [product information]. Philadelphia, PA: Wyeth Pharmaceuticals. 2011

  75. Meagher AK, Ambrose PG, Grasela TH, et al. The pharmacokinetic and pharmacodynamic profile of tigecycline. Clin Infect Dis. 2005;41 Suppl 5:S333–40.

    Article  CAS  PubMed  Google Scholar 

  76. Polidori M, Nuccorini A, Tascini C, et al. Vancomycin-resistant Enterococcus faecium (VRE) bacteremia in infective endocarditis successfully treated with combination daptomycin and tigecycline. J Chemother. 2011;23(4):240–1.

    Article  CAS  PubMed  Google Scholar 

  77. Jenkins I. Linezolid- and vancomycin-resistant Enterococcus faecium endocarditis: successful treatment with tigecycline and daptomycin. J Hosp Med. 2007;2(5):343–4.

    Article  PubMed  Google Scholar 

  78. Schutt AC, Bohm NM. Multidrug-resistant Enterococcus faecium endocarditis treated with combination tigecycline and high-dose daptomycin. Ann Pharmacother. 2009;43(12):2108–12.

    Article  PubMed  Google Scholar 

  79. Werth BJ, Barber KE, Tran KN, et al. Ceftobiprole and ampicillin increase daptomycin susceptibility of daptomycin-susceptible and -resistant VRE. J Antimicrob Chemother. 2015;70(2):489–93.

    Article  CAS  PubMed  Google Scholar 

  80. Sakoulas G, Rose W, Nonejuie P, et al. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2014;58(3):1494–500.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Entenza JM, Giddey M, Vouillamoz J, et al. In vitro prevention of the emergence of daptomycin resistance in Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin. Int J Antimicrob Agents. 2010;35(5):451–6.

    Article  CAS  PubMed  Google Scholar 

  82. Hall Snyder A, Werth BJ, Barber KE, et al. Evaluation of the novel combination of daptomycin plus ceftriaxone against vancomycin-resistant enterococci in an in vitro pharmacokinetic/pharmacodynamic simulated endocardial vegetation model. J Antimicrob Chemother. 2014;69(8):2148–54.

    Article  CAS  PubMed  Google Scholar 

  83. Sakoulas G, Bayer AS, Pogliano J, et al. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2012;56(2):838–44.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hindler JA, Wong-Beringer A, Charlton CL, et al. In vitro activity of daptomycin in combination with β-lactams, gentamicin, rifampin, and tigecycline against daptomycin-nonsusceptible enterococci. Antimicrob Agents Chemother. 2015;59(7):4279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith JR, Barber KE, Raut A, et al. β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2015;70(6):1738–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Arias CA, Torres HA, Singh KV, et al. Failure of daptomycin monotherapy for endocarditis caused by an Enterococcus faecium strain with vancomycin-resistant and vancomycin-susceptible subpopulations and evidence of in vivo loss of the vanA gene cluster. Clin Infect Dis. 2007;45:1343–6.

    Article  CAS  PubMed  Google Scholar 

  87. Sierra-Hoffman M, Iznaola O, Goodwin M, Mohr J. Combination therapy with ampicillin and daptomycin for treatment of Enterococcus faecalis endocarditis. Antimicrob Agents Chemother. 2012;56(11):6064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stevens MP, Edmond MB. Endocarditis due to vancomycin-resistant enterococci: case report and review of the literature. Clin Infect Dis. 2005;41:1134–42.

    Article  PubMed  Google Scholar 

  89. Matsumura S, Simor AE. Treatment of endocarditis due to vancomycin-resistant Enterococcus faecium with quinupristin-dalfopristin, doxycycline, and rifampin: a synergistic drug combination. Clin Infect Dis. 1998;27:1554–6.

    Article  CAS  PubMed  Google Scholar 

  90. Luther MK, Arvanitis M, Mylonakis E, et al. Activity of daptomycin or linezolid in combination with rifampin or gentamicin against biofilm-forming Enterococcus faecalis or E. faecium in an in vitro pharmacodynamic model using simulated endocardial vegetations and an in vivo survival assay using Galleria mellonella larvae. Antimicrob Agents Chemother. 2014;58(8):4612–20.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Smith JR, Yim J, Raut A, Rybak MJ. Oritavancin combinations with β-lactams against multidrug resistant Staphylococcus aureus and vancomycin-resistant enterococci. Antimicrob Agents Chemother. 2016;60(4):2352–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Soule DO.

Ethics declarations

Conflict of Interest

Dr. Daniel Soule declare that he has no conflict of interest.

Dr. Michael Climo declare he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Antimicrobial Stewardship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soule, D., Climo, M.M. A Clinician’s Guide to the Treatment of Vancomycin Resistant Enterococci Bacteremia and Endocarditis. Curr Treat Options Infect Dis 8, 194–207 (2016). https://doi.org/10.1007/s40506-016-0082-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-016-0082-8

Keywords

Navigation