Skip to main content

Advertisement

Log in

Computational Modelling of Diarthrodial Joints. Physiological, Pathological and Pos-Surgery Simulations

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper provides a critical review of past and current techniques for the computational modelling of diarthrodial joints. The objective of the paper is to describe strategies for addressing the computational modelling of joint mechanics using the finite element (FE) method, differentiating between geometry, constitutive modelling of the components, computational aspects and applications. The structure and function of the main components of the joints are reviewed, with emphasis on the relationship of tissue microstructure with its continuum mechanical behavior. Applications to two diarthrodial joints (human knee and temporomandibular joint) in physiological, pathological andpos-surgery situations are presented and discussed. The paper concludes with a discussion of future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Rahman E, Hefzy MS (1993) A two-dimensional dynamic anatomical model of the human knee joint. ASME J Biomech Eng 115:357–365

    Google Scholar 

  2. Akizuki S, Mow VC, Müller F, Pita JC, Howell DS, Manicourt DH (1986) Tensile properties of human knee joint cartilage:I. Influence of ionic conditions, weight bearing and fibrillation on the tensile modelus. J Orthopaed Res 4:379–392

    Google Scholar 

  3. Alastrue V, Calvo B, Peña E, Doblaré M (2006) Biomechanical modelling of refractive corneal surgery. ASME J Biomech Eng 128:150–160

    Google Scholar 

  4. Almeida ES, Spilker RL (1997) Mixed and penalty finite element models for the nonlinear behaviour of biphasic soft tissues in finite deformation: Part I alternate formulations. Comput Methods Appl Mech Eng 1:25–46

    Google Scholar 

  5. Almeida ES, Spilker RL (1997) Mixed and penalty finite element models for the nonlinear behaviour of biphasic soft tissues in finite deformation: Part II nonlinear examples. Comput Methods Appl Mech Eng 1:151–170

    Google Scholar 

  6. Almeida ES, Spilker RL (1998) Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues. Comput Methods Appl Mech Eng 151:513–538

    MATH  Google Scholar 

  7. Anderson DM, Sinclair PM, McBride KM (1991) A clinical evaluation of temporomandibular joint disk plication surgery. Am J Orthod Dentofac Orthop 100

  8. Annandale T (1887) On displacement of intraarticular cartilage of the lower jaw and its treatment by operation. Lancet 1:411–412

    Google Scholar 

  9. Arms S, Boyle J, Johnson R, Pope M (1995) Strain in the medial collateral ligament of the human knee: an autopsy study. J Biomech 29:199–206

    Google Scholar 

  10. Armstrong CG, Lai WM, Mow VC (1984) An analisysis of the unconfined compression of articular cartilage. ASME J Biomech Eng 106:165–173

    Google Scholar 

  11. Au AG, Raso VJ, Liggins AB, Otto DD, Amirfazli A (2005) A three-dimensional finite element stress analysis for the tunnel placement and buttons in anterior cruciate ligament reconstructions. J Biomech 38:827–832

    Google Scholar 

  12. Bach JM, Hull ML (1998) Strain inhomogeneity in the anterior cruciate ligament under application of external and muscular loads. ASME J Biomech Eng 120:497–503

    Google Scholar 

  13. Barbenel JC, Evans JH, Finlay JB (1973) Stress-strain-time relations for soft connective tissues. In: Kenedi (ed) Perspectives biomed eng. McMillan, New York, pp 165–172

  14. Beek M, Koolstra JH, van Ruijven LJ, van Eijden TMGJ (2000) Three-dimensional finite element analysis of the human temporomandibular joint disc. J Biomech 33:307–316

    Google Scholar 

  15. Beek M, Koolstra JH, van Eijden TMGJ (2003) Human temporomandibular joint disc cartilage as a poroelastic material. Clin Biomech 18:69–76

    Google Scholar 

  16. Beek M, Koolstra JH, van Ruijven LJ, van Eijden TMGJ (2001) Three-dimensional finite element analysis of the cartilaginous structures in the human temporomandibular joint. J Dent Res 80:1913–1918

    Article  Google Scholar 

  17. Bendjaballah MZ, Shirazi-adl A, Zukor DJ (1995) Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2:69–79

    Google Scholar 

  18. Bendjaballah MZ, Shirazi-adl A, Zukor DJ (1998) Biomechanical response of the passive human knee joint under anterior-posterior forces. Clin Biomech 13:625–633

    Google Scholar 

  19. Berkovitz BKB (2000) Collagen crimping in the intra-articular disc and articular surfaces of the human temporomandibular joint. Arch Oral Biol 45:749–756

    Google Scholar 

  20. Beynnon B, Yu J, Huston D, Fleming B, Johnson R, Haugh L, Pope M (1996) A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis. ASME J Biomech Eng 118:227–239

    Google Scholar 

  21. Papadrakakis M, Topping BHV (eds) (1994) Advances in non-linear finite element methods. Civil-Comp Ltd

  22. Blankevoort L, Huiskes R (1991) Ligament-bone interaction in a three-dimensional model of the knee. ASME J Biomech Eng 113:263–269

    Google Scholar 

  23. Buschmann MD, Grodzinsky AJ (1995) A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. ASME J Biomech Eng 117:179–192

    Google Scholar 

  24. Butler DL, Sheh MY, Stouffer DC, Samaranayake VA, Levy MS (1990) Surface strain variation in human patellar tendon and knee cruciate ligaments. ASME J Biomech Eng 39:38–45

    Google Scholar 

  25. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59:954–962

    Google Scholar 

  26. Carter DR, Wong M (1988) The role of mechanical loading histories in the development od diarthrodial joints. J Orthopaed Res 6:804–816

    Google Scholar 

  27. Chan SC, Seedhom BB (1995) The effect of the geometry of the tibia on prediction of the cruciate ligament forces: a theoretical analysis. J Eng Med 209:17–30

    Google Scholar 

  28. Chaudhry HR, Bukiet, B, Davis A, Ritter AB, Findley T (1997) Residual stress in oscillating thoracic arteries reduce circumferential stresses and stress gradient. J Biomech 30:57–62

    Google Scholar 

  29. Chen J, Buckwalter K (1993) Displacement analysis of the temporomandibular condyle from magnetic resonance images. J Biomech 26:1455–1462

    Google Scholar 

  30. Chen J, Xu L (1994) A finite element analysis of the human temporomandibular joint. ASME J Biomech Eng 116:401–407

    Google Scholar 

  31. Chen Y, Chen X, Hisada T (2006) Non-linear finite element analysis of mechanical electrochemical phenomena in hydrated soft tissues based on triphasic theory. Int J Numer Methods Eng 65:147–173

    MATH  Google Scholar 

  32. Cohen B, Gardner TR, Ateshian GA (1993) The influence of transverse isotropy on cartilage indentation behaviour: a study of the human humeral head. Trans Orthopaed Res Soc 39:185

    Google Scholar 

  33. Cohen B, Lai WM, Chorney GS, Dick HM, Mow VV (1992) Unconfined compression of transversely isotropic biphasic tissues. Trans ASME 22:207–219

    Google Scholar 

  34. Coletti JM, Akeson WH, Woo SLY (1972) A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface. J Bone Joint Surg 54A:147–160

    Google Scholar 

  35. Cooper B, Oberdorfer M, Rumpf D, Malakhova O, Rudman R, Mariotti A (1999) Trauma modifies strength and composition of retrodiscal tissues of the goat temporomandibular joint. Oral Dis 5(4):329–336

    Article  Google Scholar 

  36. Cowin SC, Hegedus DH (1976) Bone remodeling: a theory od adaptative elasticity. J Elasticity 6:313–326

    MATH  MathSciNet  Google Scholar 

  37. Currey JD (2002) Bones. Structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  38. DeVocht JW, Goel VK, Zeitler DL, Lew DA (1996) A study of the control of disc movement within the temporomandibular joint using the finite element technique. J Oral Maxil Surg 54:1431

    Google Scholar 

  39. Doblaré M, Cueto E, Calvo B, Martínez MA, García JM, Cegoñino J (2005) On the employ of meshless methods in biomechanics. Comput Methods Appl Mech Eng 194:801–821

    MATH  Google Scholar 

  40. Doblaré M, Cueto E, Calvo B, Martínez MA, García JM, Peña E (2004) Computational bioengineering. Current trends and applications. In: An analysis of the performance of meshless methods in biomechanics. Imperial College Press, London, pp 69–100

  41. Doblaré M, García JM (2001) Application of an anisotropic bone-remodeling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J Biomech 34(9):1157–1170

    Google Scholar 

  42. Doblaré M, García JM (2002) Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biomech 35:1–17

    Google Scholar 

  43. Haut Donahue TL, Hull ML, Rashid MM, Jacobs RC (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. ASME J Biomech Eng 124:273–280

    Google Scholar 

  44. Donzelli PS, Gallo LM, Spilker RL, Palla S (2004) Biphasic finite element simulation of the TMJ disc from in vivo kinematic and geometric measurements. J Biomech 37(11):1787–1791

    Google Scholar 

  45. Donzelli PS, Spilker RS, Ateshian GA, Van Mow C (1999) Contact analysis of biphasic transversely isotropic cartilage layers and correlation with tissue failure. J Biomech 32:1037–1047

    Google Scholar 

  46. Dworkin, SF, Huggins KH, LeResche L, VonKorff M, Howard J, Truelove E, Sommers E (1990) Epidemiology of signs and symptoms in temporomandibular disorders: clinical signs in cases and controls. J Am Dent Assoc 120(3):273–281

    Google Scholar 

  47. Eberhardt AW, Lewis JL, Keer LM (1991) Contact layered elastic spheres as a model of joint contact: effect of tangential load and friction. ASME J Biomech Eng 113:107–108

    Google Scholar 

  48. Van Eijden TM, Kouwenhoven E, Verbug J, Weijs WA (1986) A mathematical model of the patellofemoral joint. J Biomech 19:219–229

    Google Scholar 

  49. Eisenberg SR, Grodzinsky AJ (1985) Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J Orthopaed Res 3:148–159

    Google Scholar 

  50. Elmore SM, Sokoloff L, Norris G, Carmeci P (1963) Nature of imperfect elasticity of articular cartilage. J Appl Physiol 18:393–396

    Google Scholar 

  51. Essinger JR, Leyvraz PF, Heegaard JH, Robertson DD (1989) A mathematical model for the evaluation of the behavior during flexion of condylar-type knee prostheses. J Biomech 22:1229–1241

    Google Scholar 

  52. Fithian DC, Kelly MA, Van Mow C (1990) Material properties and structure-function relationship in the menisci. Clin Orthop Relat R 252:19–31

    Google Scholar 

  53. Fletcher R (2001) Practical methods of optimization. Wiley

  54. Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838

    MathSciNet  Google Scholar 

  55. Fortin M, Glowinski R (1983) Augmented Lagrangian methods: application to the numerical solution of boundary value problems, volume 15. North Holland, Amsterdam

    Google Scholar 

  56. Fox RJ, Harner CD, Sakane M, Carlin GJ, Woo SL-Y (1998) Determination of the in situ forces in the human posterior cruciate ligament using robotic technology. Am J Spors Med 26:395–401

    Google Scholar 

  57. Frank CB, Jackson DW (1997) Reconstruction of the anterior cruciate ligament. J Bone Joint Surg 79-A:1556–1576

    Google Scholar 

  58. Fu FH, Harner C, Vince KG (1994) Knee surgery. Willians and Wilkins, Baltimore

    Google Scholar 

  59. Fung YC (1973) Biorheology of soft tissues. Biorheol 10:139–155

    Google Scholar 

  60. Fung YC (1993) Biomechanics. Mechanical properties of living tissues. Springer

  61. Gabriel MG, Wong EK, Woo SL-Y, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthopaed Res 22:85–89

    Google Scholar 

  62. Gardiner JC, Weiss JA (2003) Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthopaed Res 21:1098–1106

    Google Scholar 

  63. Gardiner JC, Weiss JA, Rosenberg TD (2001) Strain in the human medial collateral ligament during valgus lading of the knee. Clin Orthop Relat R 391:266–274

    Google Scholar 

  64. Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids 52(7):1595–1625

    MATH  MathSciNet  Google Scholar 

  65. Glowinski R, LeTallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM Studies in Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  66. Gray H (1998) Gray’s Anatomy: The anatomical basis of medicine and surgery, volume 1, 38 edn. Harcourt

  67. Grodzinsky AJ (1973) Electromechanical and physicochemical properties of connective tissue. Crit Rev Biomed Eng 9:133–199

    Google Scholar 

  68. Rouviere H, Delmas A (1985) Anatomie humaine, volume 1. Masson

  69. Harfe DT, Chuinard CR, Espinoza LM, Thomas KA, Solomonow M (1998) Elongation patterns of the collateral ligamnets of the human knee. Clin Biomech 13:163–175

    Google Scholar 

  70. Harner CD, Giffin R, Dunteman RC, Annunziata CC, Friedman MJ (2000) Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. J Bone Joint Surg 82-A:1652–1663

    Google Scholar 

  71. Hayes WC, Mockros LF (1971) Viscoelastic constitutive relations for human articular cartilage. J Appl Physiol 18:562–568

    Google Scholar 

  72. Heegard J, Leyvraz PF, Curnier A, Rakotomana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28:1265–1279

    Google Scholar 

  73. Hefzy MS, Grood ES (1988) Review of knee models. Appl Mech Rev 41:1–13

    Article  Google Scholar 

  74. Hefzy MS, Grood ES (1993) An analytical technique for modelling knee joint stiffness—Part II: Ligamentous geometric nonlinearities. ASME J Biomech Eng 105:143–145

    Google Scholar 

  75. Hefzy MS, Yang H (1993) Three-dimensional anatomical model of the human patello-femoral joint to determine patello-femoralmotions and contact characteristics. ASME J Biomech Eng 15:289–302

    Google Scholar 

  76. Hernandez CK, Beaupre GS, Keller TS, Carter DR (2001) The influence of bone volume fraction and this fraction on bone strength and modulus. Bone 29(1):74–78

    Google Scholar 

  77. Herrmann LR, Peterson FE (1968) A numerical procedure for viscoelastic stress analysis. In: Proceedings of the seventh meeting of ICRPG mechanical behaviour working group, Orlando, 1968

  78. Hibbit, Karlsson, Sorensen, Inc (2003) Abaqus user’s manual, v. 6.4. HKS inc. Pawtucket, RI, USA

  79. Hill AV (1938) The heat of shortening and the dynamic constans of muscle. Proc Roy Soc Lond B 126:136–195

    Google Scholar 

  80. Hirokawa S, Tsuruno R (1997) Hyperelastic model analysis of anterior cruciate ligament. Med Eng Phys 19:637–651

    Google Scholar 

  81. Hirokawa S, Tsuruno R (2000) Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. J Biomech 33:1069–1077

    Google Scholar 

  82. Hirsch C (1944) A contribution to the pathogenesis chondromalacia of the patella. Acta Chir Scand 90:1–106

    Google Scholar 

  83. Holmes MH (1986) Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. ASME J Biomech Eng 108:372–381

    Google Scholar 

  84. Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, New York

    MATH  Google Scholar 

  85. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61:1–48

    MATH  MathSciNet  Google Scholar 

  86. Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190:4379–4403

    Google Scholar 

  87. Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behaviour of arterial walls: continuum formulation and finite element analysis. Eur J Mech A/Solid 21:441–463

    MATH  Google Scholar 

  88. Hu K, Qiguo R, Fang J, Mao JJ (2003) Effects of condylar fibrocartilage on the biomechanical loading of the human temporomandibular joint in a three-dimensional, nonlinear finite element model. Med Eng Phys 25:107–113

    Google Scholar 

  89. Huberti HH, Hayes WC (1984) Patellofemoral contact pressures. J Bone Joint Surg 66-A:715–724

    Google Scholar 

  90. Hughes TJR (2000) The finite element method: linear static and dynamic finite analysis. Dover, New York

    MATH  Google Scholar 

  91. Hull ML, Berns GS, Varma H, Patterson A (1995) Strain in the medial collateral ligament of the human knee under single and combined loads. J Biomech 29:199–206

    Google Scholar 

  92. Humphrey JD (2002) Continuum biomechanics of soft biological tissues. Proc Roy Soc Lond A 175:1–44

    Google Scholar 

  93. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophysic Chem 173:257–318

    Google Scholar 

  94. Jackson JP (1968) Degenerative changes in the knee after meniscectomy. Br Med J 2:525

    Google Scholar 

  95. Jacobs CR (1994) Numerical simulation of bone adaption to mechanical loading. PhD thesis, Stanford University, Stanford, California

  96. Jalani A, Shirazi-adl A, Bendjaballah MZ (1997) Biomechanics of human tibio-femoral joint in axial rotation. Knee 4:203–213

    Google Scholar 

  97. Jurvelin JS, Arokoski JP, Hunziker EB (1997) Optical and mechanical determination of Poisson’s ratio of adult bovine articular cartilage. J Biomech 33:235–241

    Google Scholar 

  98. Kastelic J, Galeski A (1978) The multicomposite structure of tendon. J Connect Tissue R 6:11–23

    Article  Google Scholar 

  99. Kempson GE, Freeman MAR, Swanson SA (1971) The determination of a creep modulus for articular cartilage form indentation tests on the human femoral head. J Biomech 4:239–250

    Google Scholar 

  100. Keyac JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173

    Google Scholar 

  101. Khalsa PS, Eisenberg SR (1997) Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. J Biomech 30:589–594

    Google Scholar 

  102. Koolstra JH, van Eijden TMGJ (1995) Biomechanical analysis of Jaw-closing movements. J Dent Res 74:1564–1570

    Google Scholar 

  103. Koolstra JH, van Eijden TMGJ (1999) Three-dimensional dynamical capabilities of the human masticatory muscles. J Biomech 32:145–152

    Google Scholar 

  104. Koolstra JH, van Eijden TMGJ (2004) Functional significance of the coupling between head and jaw movements. J Biomech 37:1387–1392

    Google Scholar 

  105. Korhonen RM, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS (2003) Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal proteoglycan depleted and collagen degraded articular cartilage. J Biomech 36:1373–1379

    Google Scholar 

  106. Kurita H, Ohtsuka A, Kobayashi H, Kurashina K (2001) Resorption of the lateral pole of the mandibular condyle in temporomandibular disc displacement. Dentomaxillofac Rad 30:88–91

    Google Scholar 

  107. Lai WM, Mow VC, Roth V (1986) Effects of a nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. ASME J Biomech Eng 108:123–130

    Google Scholar 

  108. Lanir Y (1979) A structural theory for the homogeneous biaxial stress-strain relationship in flat collageneous tissues. J Biomech 12:423–436

    Google Scholar 

  109. Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16:1–12

    Google Scholar 

  110. LeRoux MA, Setton LA (2002) Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. ASME J Biomech Eng 124:315–321

    Google Scholar 

  111. Lewis JL, Lew WD, Hill JA, Hanley P, Ohland K, Kirstukas S, Hunter RE (1989) Knee joint motion and ligament forces before and after ACL reconstruction. ASME J Biomech Eng 111:97–106

    Article  Google Scholar 

  112. Li G, Gil J, Kanamori A, Woo SL (1999) A validated three-dimensional computational model of a human joint. ASME J Biomech Eng 121:657–662

    Google Scholar 

  113. Li G, Lopez O, Rubash H (2001) Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. ASME J Biomech Eng 123:341–346

    MATH  Google Scholar 

  114. Limbert G, Middleton J (2004) A tranversely isotropic viscohyperelastic material. Application to the modeling of biological soft connective tissues. Int J Solids Struct 41:4237–4260

    MATH  Google Scholar 

  115. Limbert G, Middleton J, Taylor M (2004) Finite element analysis of the human ACL subjected to passive anterior tibial loads. Comput Methods Biomech Biomed Eng 7:1–8

    Google Scholar 

  116. Linn FC, Sokoloff L (1965) Movement and composition of interstitial fluid of cartilage. Arthritis Rheum 8:481–494

    Google Scholar 

  117. Van Loocke M, Lyons CG, Simms C (2004) Stress-strain-time relations for soft connective tissues. In: Prendergast PJ, McHugh PE (eds) Topics in bio-mechanical engineering. Trinity centre for bioengineering & National Centre for Biomedical Engineering Science, pp 216–234

  118. Lotz JC, Gerhart TN, Hayes WC (1991) Mechanical properties of metaphyseal bone in the proximal femur. J Biomech 24:317–329

    Google Scholar 

  119. Li LP, Bushmann MD, Shirazi-Adl A (2000) A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J Biomech 33:1533–1541

    Google Scholar 

  120. Li LP, Soulhat J, Bushmann MD, Shirazi-Adl A (1999) Nonlinear analysis of cartilage in unconfined ramp compression usinga fibril reinforced poroelastic model. Clin Biomech 14:673–682

    Google Scholar 

  121. Luenberger DE (1989) Programacion lineal y no lineal. Addison-Wesley Iberoamericana

  122. Macnicol MF, Thomas NP (2000) The knee after menisctomy. J Bone Joint Surg 82-B:157–159

    Google Scholar 

  123. Mak A (1986) The apparent viscoelastic behaviour of articular cartilage. The contributions from the intrinsic matrix viscoelastocity and intersticial fluid flows. ASME J Biomech Eng 108:123–130

    Google Scholar 

  124. Maroudas A (1976) Balance between swelling pressures and collagen tension in normal and degenerate cartilage. Nature 260:808–809

    Google Scholar 

  125. Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New York

    Google Scholar 

  126. Martins JAC, Pires EB, Salvado R, Dinis PB (1998) A numerical model of passive and active behavior of skeletal muscles. Comput Methods Appl Mech Eng 151:419–433

    MATH  Google Scholar 

  127. Matthews LS, Sonstegard DA, Henke JA (1977) Load bearing characteristics of the patello-femoral joint. Acta Orthop Scand 48:511–516

    Article  Google Scholar 

  128. Moeinzadeh M-H, Engin AE, Akkas N (1983) Two-dimensional dynamic modelling of human knee joint. J Biomech 16:253–264

    Google Scholar 

  129. Mogo KE, Shirazi-Adl A (2004) Cruciate coupling and screw-home mechanics in passive knee joint during extension-flexion. J Biomech (in press)

  130. Mow CV, Kuei SC, Lai WM, Amstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. ASME J Biomech Eng 102:73–84

    Google Scholar 

  131. Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394

    Google Scholar 

  132. Mow VC, Kwan MK, Lai WM, Armstrong CG (1985) A finite deformation theory for nonlinearity permeable soft hydrated biological tissues. In: Frontiers in biomechanics. Springer

  133. Mow VC, Guo XE (2003) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 4:175–209

    Google Scholar 

  134. Mow VC, Ratcliffe A (1997) Structure and function of articular cartilage and meniscus, 2nd edn. Lippincott-Raven, Philadelphia, pp 113–177

    Google Scholar 

  135. Mow VC, Soslowsky LJ (1991) Basic orthopeadics biomechanics. In: Friction, lubrication and wear of diarthrodial joints. Raven Press, New York, pp 245–292

  136. Murakami T (1990) The lubrication in natural synovial joints and joint protheses. JSME Int J Vib Sys 33:465–474

    Google Scholar 

  137. Nagahara K, Murata S, Nakamura S, Tsuchiya T (1999) Displacement and stress distribution in the temporomandibular joint during clenching. Angle Orthod 69:372

    Google Scholar 

  138. Nickel JC, McLachlan KR (1994) In vivo measurement of the frictional properties of the temporomandibular joint disc. Arch Oral Biol 39(4)

  139. Nitzan DW (2001) The process of lubrication impairment and its involvement in temporomandibular joint disc displacement: a theoretical concept. J Oral Maxil Surg 59:36–45

    Google Scholar 

  140. Oomens CWJ, Maenhout M, van Oijen CH, Drost MR, Baaijens FP (2003) Finite element modelling of contracting skeletal muscle. Phil Trans Roy Soc Lond B 358:1453–1460

    Google Scholar 

  141. Osborn JW (1993) A model to describe how ligaments may control symmetrical jaw opening movements in man. J Oral Rehabil 20:585–604

    Google Scholar 

  142. Park S, Krishnan R, Nicoll SB, Ateshian GA (2003) Cartilage interstitial fluid support in unconfined compression. J Biomech 36:1785–1796

    Google Scholar 

  143. Parsons JR, Black J (1977) The viscoelastic shear behavior of normal Rabbit Articular Cartilage. J Biomech 10:21–29

    Google Scholar 

  144. Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M (2006) Influence of the tunnel angle in acl reconstructions on the biomechanics of the knee joint. Clin Biomech 21(5):508–516

    Google Scholar 

  145. Peña E, Calvo B, Martinez MA, Doblaré M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39:1686–1701

    Google Scholar 

  146. Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M (2005) Finite element analysis of the effect of meniscal tears and meniscectomy on human knee biomechanics. Clin Biomech 20:498–507

    Google Scholar 

  147. Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M (2006) Why lateral meniscectomy is more dangerous than medial meniscectomy? a finite element study. J Orthopaed Res 24:1001–1010

    Google Scholar 

  148. Peña E, Calvo B, Martínez MA, Doblaré M (2007) An anisotropic visco-hyperelastic model for ligaments at finite strains: formulation and computational aspects. Int J Solid Struct 44:760–778

    MATH  Google Scholar 

  149. Peña E, Martinez MA, Calvo B, Doblaré M (2006) On the numerical treatment of initial strains in soft biological tissues. Int J Numer Meth Eng 68:836–860

    MATH  Google Scholar 

  150. Peña E, Martinez MA, Calvo B, Palanca D, Doblaré M (2005) A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. Clin Biomech 20:636–644

    Google Scholar 

  151. Peck C, Langenbach GEJ, Hannam AG (2000) Dynamic simulation of muscle and articular properties during human wide jaw opening. Arch Oral Biol 45:963–982

    Google Scholar 

  152. Pérez-Palomar A (2004) Three dimensional finite element simulation of the temporomandibular joint. PhD thesis, University of Zaragoza, Spain (in Spanish)

  153. Pérez-Palomar A, Doblaré M (2006) On the numerical simulation of the mechanical behaviour of articular cartilage. Int J Numer Meth Eng 67:1244–1271

    Google Scholar 

  154. Pérez-Palomar A, Doblaré M (2006) 3D Finite Element simulation of the opening movement of the mandible in healthy and pathologic situations. ASME J Biomech Eng 128:242–249

    Google Scholar 

  155. Pérez-Palomar A, Doblaré M (2006) Finite Element Analysis of the Temporomandibular Joint during lateral excursions of the mandible. J Biomech 39:1244–1271

    Google Scholar 

  156. Pérez-Palomar A, Doblaré M (2006) The effect of collagen reinforcement in the behaviour of the temporomandibular joint disc. J Biomech 39:1075–1085

    Google Scholar 

  157. Pioletti D (1997) Viscoelastic properties of soft tissues. PhD thesis, The University of Lausanne

  158. Pioletti DP, Rakotomanana L (2000) Finite element model of the anterior cruciate ligament. Eur J Mech A/Solids 19:749–759

    MATH  Google Scholar 

  159. Pioletti DP, Rakotomanana L, Leyvraz PF, Benvenuti JF (1997) Finite element model of the anterior cruciate ligament. Comput Methods Biomech Biomed Eng

  160. Pioletti DP, Rakotomanana LR, Benvenuti J-F, Leyvraz P-F (1998) Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J Biomech 31:753–757

    Google Scholar 

  161. Powell MJD (1969) Optimization. In: A method for nonlinear constraints in minimization problems. Academic, New York, pp 283–298

  162. Prater ME, Bailey BJ, and Quinn FB (1998) Temporomandibular joint disorders. The University of Texas Medical Branch

  163. Périé D, Hobatho MC (1998) In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis. Clin Biomech 13:394–402

    Google Scholar 

  164. Puso MA, Weiss JA (1998) Finite element implementation of anisotropic quasilinear viscoelasticity. ASME J Biomech Eng 120:162–170

    Google Scholar 

  165. Puxkandl R, Zizak I, Paris O, Tesch W, Bernstorff S, Purslow P, Fratzll P (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Phil Trans Roy Soc Lond B 357:191–197

    Google Scholar 

  166. Rachev A, Hayashi K (1999) Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann Biomed Eng 27(4):459–468

    Google Scholar 

  167. Raminaraka NA, Terrier A, Theumann N, Siegrist O (2005) Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin Biomech 20:434–442

    Google Scholar 

  168. Sanjeevi RA (1982) A viscoelastic model for the mechanical properties of biological materials. J Biomech 15:107–109

    Google Scholar 

  169. Sasaki N, Odajima S (1996) Stress-strain curve and Young’s modulus of a collagen molecule as determined by X-ray diffraction technique. J Biomech 29:655–658

    Google Scholar 

  170. Sathasivam S, Walker PS (1997) A computer model with surface friction for the prediction of total knee kinematics. J Biomech 30:177–184

    Google Scholar 

  171. Sato H, Ström D, Carlsson GE (1995) Controversies on anatomy and function of the ligaments associated with the temporomandibular joint: a literature survey. J Orofac Pain 9:308–316

    Google Scholar 

  172. Scheller G, Sobau C, Bülow JU (2001) Arthroscopic partial lateral meniscectomy in an otherwise normal knee: clinical, functional and radiographic results of a long-term follow-up study. Arthrosc 17:946–952

    Google Scholar 

  173. Setton L, Elliott DM, Mow VC (1999) Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr Cartilage 7:2–14

    Google Scholar 

  174. Shengyi T, Yinghua X (1991) Biomechanical properties and collagen fiber orientation of TMJ discs in dogs: Part I. Gross anatomy and collagen fiber orientation of the discs. J Craniomandib Disord 5:28–34

    Google Scholar 

  175. Simmons R, Howell S, Hull ML (2003) Effect of angle of the femoral and tibial tunnels in the coronal plane and incremental excision of the posterior cruciate ligament on tension of an anterior cruciate ligament graft: an in vitro study. J Bone Joint Surg 85-A:1018–1029

    Google Scholar 

  176. Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput Methods Appl Mech Eng 60:153–173

    MATH  MathSciNet  Google Scholar 

  177. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  178. Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48:101–118

    MATH  Google Scholar 

  179. Simo JC, Taylor RL (1991) Quasi-incompresible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput Methods Appl Mech Eng 85:273–310

    MATH  MathSciNet  Google Scholar 

  180. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208

    MATH  MathSciNet  Google Scholar 

  181. Simo JC, Taylor R (1991) Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithm. Comput Methods Appl Mech Eng 85(3)

  182. Sokoloff L (1963) Elasticity of articular cartilage: effect of ions and viscous solutions. Sci 141:1055–1056

    Google Scholar 

  183. Song Y, Debski RE, Musahl V, Thomas M, Woo SL-Y (2004) A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech 37:383–390

    Google Scholar 

  184. Soulhat J, Buschman MD, Shirazi-Adl A (1999) A fibril-network reinforced biphasic model of cartilage in unconfined compression. ASME J Biomech Eng 121:340–347

    Google Scholar 

  185. Spencer AJM (1954) Theory of invariants. In: Continuum physics. Academic, New York, pp 239–253

  186. Spilker RL, Suh JK (1990) Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissue. Comput Struct 35(4):425–439

    MATH  Google Scholar 

  187. Suggs J, Wang C, Li G (2003) The effect of graft stiffnes on knee joint biomechanics after ACL reconstruction: a 3D computational simulation. Clin Biomech 18:35–43

    Google Scholar 

  188. Suh JK, Spilker RL, Holmes MR (1991) A penalty finite element analysis for non-linear mechanics of biphasic hydrated soft tissue under large deformation. Int J Numer Methods Eng 32:1411–1439

    MATH  Google Scholar 

  189. Suh JK, Bai S (1997) Biphasic poroviscoelastic behavior of cartilage in creep indentation test. In: Transactions 43rd annual meeting of the orthopaedic research society, San Francisco, 1997

  190. Tanaka E, Rodrigo P, Tanaka M, Kawaguchi A, Shibazaji T, Tanne K (2001) Stress analysis in the TMJ during jaw opening by use of a three dimensional finite element model based on magnetic resonance images. Int J Oral Maxil Surg 30:421–430

    Google Scholar 

  191. Tanaka E, Tanne K, Sakuda MA (1994) A three dimensional finite element model of the mandible including the TMJ and its application to stress analysis in the TMJ during clenching. Med Eng Phys 16:316–322

    Google Scholar 

  192. Tanne K, Tanaka E, Sakuda M (1991) The elastic modulus of the temporomandibular joint disc from adult dogs. J Dent Res 70:1545

    Google Scholar 

  193. Taskaya-Yilmaz N, Ogutcen-Toller M (2001) Magnetic resonance imaging evaluation of temporomandibular joint disc deformities in relation to type of disc displacement. J Oral Maxil Surg 59:860–865

    Google Scholar 

  194. Timoshenko S, Goodier JN (1972) Teoría de la elasticidad. Editorial Urmo

  195. Mow VC, Hayes WC (1991) Basic orthopaedic biomechanics. Raven Press, New York

    Google Scholar 

  196. Vedi V, Williams A, Tennant SJ, Spouse E (1999) Meniscal movement. J Bone Joint Surg 81-B:37–41

    Google Scholar 

  197. De Vita R, Slaughter WS (2005) A structural constitutive model for the strain rate-dependent behavior of anterior cruciate ligaments. Int J Solids Struct (in press)

  198. Vose GP, Kubala AL (1959) Bone strength, its relationship tox-ray-determined ash content. Human Biol 31:261–270

    Google Scholar 

  199. Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat R 109:184–192

    Google Scholar 

  200. Weinberg S, Lapointe, H (1987) Cervical extension-flexion injury (whiplash) and internal derangement of the temporomandibular joint. J Oral Maxil Surg 45(8):653–656

    Google Scholar 

  201. Weiss J, Gardiner JC (2001) Computational modelling of ligament mechanics. Crit Rev Biomed Eng 29:1–70

    Google Scholar 

  202. Weiss J, Gardiner JC, Bonifasi-Lista C (2002) Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J Biomech 35:943–950

    Google Scholar 

  203. Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS (2005) Three-dimensional finite element modeling of ligaments: technical aspects. Med Eng Phys 27:845–861

    Google Scholar 

  204. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128

    MATH  Google Scholar 

  205. Weiss JA, Maker BN, Schauer DA (1995) Treatment of initial stress in hyperelastic finite element models of soft tissues. In: Beaver Creek CO (ed) ASME summer bioengineering conference, 1995

  206. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128

    MATH  Google Scholar 

  207. Wilkes CH (1978) Arthrography of the temporomandibular joint in patients with the TMJ pain-dysfunction syndrome. Minn Med 61(11):645–652

    Google Scholar 

  208. Wilkes CH (1978) Structural and functional alterations of the temporomandibular joint. Northwest Dent 57(5):287–294

    MathSciNet  Google Scholar 

  209. Wilson W, van Donkelaar CC, van Rietbergen B, Huiskes R (2003) Pathways of load-induced cartilage damage causing degeneration in the knee after meniscectomy. J Biomech 36:845–851

    Google Scholar 

  210. Winters JM (1990) Hill-based muscle models: a system engineering perspective. In: Winters JM, Woo S (eds) Multyple muscle system. Springer, New York, pp 165–172

    Google Scholar 

  211. Woo SL, Lubock P, Gómez MA, Jemmott G, Kuei SC, Akeson WH (1979) Large deformation nonhomogeneous and directional properties of articular cartilage in uniaxial tension. J Biomech 12:437–446

    Google Scholar 

  212. Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2:1–49

    MathSciNet  Google Scholar 

  213. Yasunaga T, Kimura M, Kikuchi S (2001) Histologic change of the meniscus and cartilage tissue after meniscal suture. Clin Orthop Relat R 387:232–240

    Google Scholar 

  214. Yoshiya M, Kurosaka M, Yamada M (1991) Optimal orientation of bone tunnels in the anterior cruciate ligament reconstruction. Trand ORS 16:602

    Google Scholar 

  215. Zahalak GI (1981) A distributed moment approximation for kinetic theories of muscular contraction. Math Biosci 55:89–114

    MATH  Google Scholar 

  216. Zahalak GI, Ma SP (1990) Muscle activation and contraction: constitutive relations based on cross-bridge kinetics. ASME J Biomech Eng 112:52–62

    Google Scholar 

  217. Zajac FE (1989) Muscle and tendon: properties, models, scaling and application ti biomechanics and motor control. Crit Rev Biomed Eng 17:359–411

    Google Scholar 

  218. Zienkiewicz OC, Taylor RL (1994) The finite element method, volume 1: basic formulation and linear problems. McGraw-Hill

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Doblaré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, E., Pérez del Palomar, A., Calvo, B. et al. Computational Modelling of Diarthrodial Joints. Physiological, Pathological and Pos-Surgery Simulations. Arch Computat Methods Eng 14, 47–91 (2007). https://doi.org/10.1007/s11831-006-9001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-006-9001-3

Keywords

Navigation