Skip to main content
Log in

Age-Associated Hemispheric Asymmetry Reduction on the Auditory M100 to Nonverbal Stimuli

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The current study investigated normal aging associated differences on hemispheric laterality of sensory responses to nonverbal auditory stimuli using magnetoencephalography. Twelve older and 12 younger adults with normal hearing thresholds participated. The spatial locations, latencies, and strengths of evoked field M50 and M100 were quantified by equivalent current dipole modeling. No differences were found on M50 or M100 dipole latencies. Older adults had stronger M50 sources bilaterally than younger adults. This difference may be attributable to a decrease in central nervous system inhibitory capacities during normal aging. Older adults also had reduced hemispheric asymmetry on M100 dipole locations and strengths; younger adults had stronger M100 in right than left hemisphere, whereas older adults did not show this expected hemispheric asymmetry. These results indicate that the HAROLD model (Hemispheric Asymmetry Reduction in Older Adults) applies at the level of initial sensory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amenedo, E., & Diaz, F. (1998). Aging-related changes in processing of non-target and target stimuli during an auditory oddball task. Biological Psychology, 48(3), 235–267.

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association. (2000). Diagnostic criteria from DSM-IV-TR. Washington, D.C.: Asociation.

    Google Scholar 

  • Anderer, P., Semlitsch, H. V., & Saletu, B. (1996). Multichannel auditory event-related brain potentials: Effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Electroencephalography and Clinical Neurophysiology, 99(5), 458–472.

    Article  PubMed  CAS  Google Scholar 

  • Andres, P., Parmentier, F. B., & Escera, C. (2006). The effect of age on involuntary capture of attention by irrelevant sounds: A test of the frontal hypothesis of aging. Neuropsychologia, 44 (12), 2564–2568.

    Article  PubMed  Google Scholar 

  • Baumgartner, C., Sutherling, W. W., Di, S., & Barth, D. S. (1991). Spatiotemporal modeling of cerebral evoked magnetic fields to median nerve stimulation. Electroencephalography and Clinical Neurophysiology, 79(1), 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Belin, P., Zilbovicius, M., Crozier, S., Thivard, L., Fontaine, A., Masure, M. C., et al. (1998). Lateralization of speech and auditory temporal processing. Journal of Cognitive Neuroscience, 10(4), 536–540.

    Article  PubMed  CAS  Google Scholar 

  • Bellis, T. J., Nicol, T., & Kraus, N. (2000). Aging affects hemispheric asymmetry in the neural representation of speech sounds. Journal of Neuroscience, 20(2), 791–797.

    PubMed  CAS  Google Scholar 

  • Bennett, I. J., Golob, E. J., & Starr, A. (2004). Age-related differences in auditory event-related potentials during a cued attention task. Clinical Neurophysiology, 115(11), 2602–2615.

    Article  PubMed  Google Scholar 

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85–100.

    Article  PubMed  Google Scholar 

  • Chait, M., Simon, J. Z., & Poeppel, D. (2004). Auditory M50 and M100 responses to broadband noise: Functional implications. Neuroreport, 15(16), 2455–2458.

    Article  PubMed  Google Scholar 

  • Chance, S. A., Casanova, M. F., Switala, A. E., Crow, T. J., & Esiri, M. M. (2006). Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathologica (Berl), 111(5), 459–464.

    Article  Google Scholar 

  • Chao, L. L., & Knight, R. T. (1995). Human prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuroreport, 6(12), 1605–1610.

    Article  PubMed  CAS  Google Scholar 

  • Chao, L. L., & Knight, R. T. (1997). Age related prefrontal alterations during auditory memory. Neurobiology of Aging, 18(1), 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Clementz, B. A., Barber, S. K., & Dzau, J. R. (2002). Knowledge of stimulus repetition affects the magnitude and spatial distribution of low-frequency event-related brain potentials. Audiology & Neuro–otology, 7(5), 303–314.

    Article  Google Scholar 

  • Clementz, B. A., Dzau, J. R., Blumenfeld, L. D., Matthews, S., & Kissler, J. (2003). Ear of stimulation determines schizophrenia-normal brain activity differences in an auditory paired-stimuli paradigm. European Journal of Neuroscience, 18(10), 2853–2858.

    Article  PubMed  Google Scholar 

  • Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.

    Article  PubMed  CAS  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201–215.

    Article  PubMed  CAS  Google Scholar 

  • Cuffin, B. N. (1991). Moving dipole inverse solutions using MEGs measured on a plane over the head. Electroencephalography and Clinical Neurophysiology, 78(5), 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2001). The effect of task relevance on the cortical response to changes in visual and auditory stimuli: An event-related fMRI study. Neuroimage, 14(6), 1256–1267.

    Article  PubMed  CAS  Google Scholar 

  • Edgar, J. C., Huang, M. X., Weisend, M. P., Sherwood, A., Miller, G. A., Adler, L. E., et al. (2003). Interpreting abnormality: An EEG and MEG study of P50 and the auditory paired-stimulus paradigm. Biological Psychology, 65, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Fabiani, M., Low, K. A., Wee, E., Sable, J. J., & Gratton, G. (2006). Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults. Journal of Cognitive Neuroscience, 18(4), 637–650.

    Article  PubMed  Google Scholar 

  • Fitzgibbons, P. J., & Gordon-Salant, S. (2004). Age effects on discrimination of timing in auditory sequences. Journal of the Acoustical Society of America, 116(2), 1126–1134.

    Article  PubMed  Google Scholar 

  • Ford, J. M., & Pfefferbaum, A. (1991). Event-related potentials and eyeblink responses in automatic and controlled processing: Effects of age. Electroencephalography and clinical neurophysiology, 78(5), 361–377.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, M., Kastner, J., Wagner, M., Hawes, S., & Ebersole, J. S. (2002). A standardized boundary element method volume conductor model. Clinical Neurophysiology, 113(5), 702–712.

    Article  PubMed  Google Scholar 

  • Geal-Dor, M., Goldstein, A., Kamenir, Y., & Babkoff, H. (2006). The effect of aging on event-related potentials and behavioral responses: Comparison of tonal, phonologic and semantic targets. Clinical Neurophysiology, 117(9), 1974–1989.

    Article  PubMed  Google Scholar 

  • Gerken, G. M. (1996). Central tinnitus and lateral inhibition: An auditory brainstem model. Hearing Research, 97(1–2), 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Godey, B., Schwartz, D., de Graaf, J. B., Chauvel, P., & Liegeois-Chauvel, C. (2001). Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: A comparison of data in the same patients. Clinical Neurophysiology, 112(10), 1850–1859.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Salant, S., Yeni-Komshian, G. H., Fitzgibbons, P. J., & Barrett, J. (2006). Age-related differences in identification and discrimination of temporal cues in speech segments. Journal of the Acoustical Society of America, 119(4), 2455–2466.

    Article  PubMed  Google Scholar 

  • Grunwald, T., Boutros, N. N., Pezer, N., von Oertzen, J., Fernandez, G., Schaller, C., et al. (2003). Neuronal substrates of sensory gating within the human brain. Biological Psychiatry, 53(6), 511–519.

    Article  PubMed  Google Scholar 

  • Hämäläinen, M. S., & Ilmoniemi, R. S. (1984). Interpreting measured magnetic fields of the brain: Estimates of current distributions. Report TKK-F-A559. Espoo, Finland, Helsinki University of Technology.

  • Hari, R. (1990). Magnetic evoked fields of the human brain: Basic principles and applications. Electroencephalography and Clinical Neurophysiology Supplement, 41, 3–12.

    PubMed  CAS  Google Scholar 

  • Hasher, L., Stoltzfus, E. R., Zacks, R. T., & Rypma, B. (1991). Age and inhibition. Journal of Experimental Psychology. Learning, Memory, and Cognition, 17(1), 163–169.

    Article  PubMed  CAS  Google Scholar 

  • He, N., Dubno, J. R., & Mills, J. H. (1998). Frequency and intensity discrimination measured in a maximum-likelihood procedure from young and aged normal-hearing subjects. Journal of the Acoustical Society of America, 103(1), 553–565.

    Article  PubMed  CAS  Google Scholar 

  • Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. (2004). Time course and hemispheric lateralization effects of complex pitch processing: Evoked magnetic fields in response to rippled noise stimuli. Neuropsychologia, 42(13), 1814–1826.

    PubMed  Google Scholar 

  • Hillebrand, A., & Barnes, G. R. (2002). A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage, 16(3 Pt 1), 638–650.

    Article  PubMed  CAS  Google Scholar 

  • Huotilainen, M., Winkler, I., Alho, K., Escera, C., Virtanen, J., Ilmoniemi, R. J., et al. (1998). Combined mapping of human auditory EEG and MEG responses. Electroencephalography and Clinical Neurophysiology, 108(4), 370–379.

    Article  PubMed  CAS  Google Scholar 

  • Hymel, M. R., Cranford, J. L., & Stuart, A. (1998). Effects of contralateral speech competition on auditory event-related potentials recorded from elderly listeners: Brain map study. Journal of the American Academy of Audiology, 9(5), 385–397.

    PubMed  CAS  Google Scholar 

  • Iragui, V. J., Kutas, M., Mitchiner, M. R., & Hillyard, S. A. (1993). Effects of aging on event-related brain potentials and reaction times in an auditory oddball task. Psychophysiology, 30(1), 10–22.

    Article  PubMed  CAS  Google Scholar 

  • Kara, P., & Friedlander, M. J. (1998). Dynamic modulation of cerebral cortex synaptic function by nitric oxide. Progress in Brain Research, 118, 183–198.

    PubMed  CAS  Google Scholar 

  • Kotak, V. C., Fujisawa, S., Lee, F. A., Karthikeyan, O., Aoki, C., & Sanes, D. H. (2005). Hearing loss raises excitability in the auditory cortex. Journal of Neuroscience, 25(15), 3908–3918.

    Article  PubMed  CAS  Google Scholar 

  • Laffont, F., Bruneau, N., Roux, S., Agar, N., Minz, M., & Cathala, H. P. (1989). Effect of age on auditory evoked responses (AER) and augmenting-reducing. Neurophysiologie Clinique, 19(1), 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Ling, L. L., Hughes, L. F., & Caspary, D. M. (2005). Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience, 132(4), 1103–1113.

    Article  PubMed  CAS  Google Scholar 

  • Lutkenhoner, B., & Steinstrater, O. (1998). High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiology & Neuro–otology, 3(2–3), 191–213.

    CAS  Google Scholar 

  • Mendelson, J. R., & Lui, B. (2004). The effects of aging in the medial geniculate nucleus: A comparison with the inferior colliculus and auditory cortex. Hearing Research, 191(1–2), 21–33.

    Google Scholar 

  • Mendelson, J. R., & Ricketts, C. (2001). Age-related temporal processing speed deterioration in auditory cortex. Hearing Research, 158(1–2), 84–94.

    Article  PubMed  CAS  Google Scholar 

  • Naatanen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24(4), 375–425.

    Article  PubMed  CAS  Google Scholar 

  • Naatanen, R., Teder, W., Alho, K., & Lavikainen, J. (1992). Auditory attention and selective input modulation: a topographical ERP study. Neuroreport, 3(6), 493–496.

    Article  PubMed  CAS  Google Scholar 

  • Ostroff, J. M., McDonald, K. L., Schneider, B. A., & Alain, C. (2003). Aging and the processing of sound duration in human auditory cortex. Hearing Research, 181(1–2), 1–7.

    Article  PubMed  Google Scholar 

  • Pantev, C., Hoke, M., Lutkenhoner, B., Lehnertz, K., & Spittka, J. (1986). Causes of differences in the input–output characteristics of simultaneously recorded auditory evoked magnetic fields and potentials. Audiology, 25(4–5), 263–276.

    PubMed  CAS  Google Scholar 

  • Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349(6304), 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl D), 5–12.

    PubMed  Google Scholar 

  • Pekkonen, E., Huotilainen, M., Virtanen, J., Sinkkonen, J., Rinne, T., Ilmoniemi, R. J., et al. (1995). Age-related functional differences between auditory cortices: A whole-head MEG study. Neuroreport, 6(13), 1803–1806.

    Article  PubMed  CAS  Google Scholar 

  • Pfefferbaum, A., Ford, J. M., Roth, W. T., Hopkins, W. F., 3rd, & Kopell, B. S. (1979). Event-related potential changes in healthy aged females. Electroencephalography and clinical neurophysiology, 46(1), 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Pickora-Fuller, M. K. (2003). Processing speed and timing in aging adults: Psychoacoustics, speech perception, and comprehension. International Journal of Audiology, 42(Suppl 1), S59–S67.

    Article  PubMed  Google Scholar 

  • Polich, J. (1997). EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology, 104(3), 244–256.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, K. R., Shaywitz, B. A., Shaywitz, S. E., Constable, R. T., Skudlarski, P., Fulbright, R. K., et al. (1996). Cerebral organization of component processes in reading. Brain, 119(Pt 4), 1221–1238.

    Article  PubMed  Google Scholar 

  • Rademacher, J., Morosan, P., Schormann, T., Schleicher, A., Werner, C., Freund, H. J., et al. (2001). Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage, 13(4), 669–683.

    Article  PubMed  CAS  Google Scholar 

  • Raza, A., Milbrandt, J. C., Arneric, S. P., & Caspary, D. M. (1994). Age-related changes in brainstem auditory neurotransmitters: Measures of GABA and acetylcholine function. Hearing Research, 77(1–2), 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Reuter-Lorenz, P. (2002). New visions of the aging mind and brain. Trends in Cognitive Sciences, 6(9), 394.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., & Lustig, C. (2005). Brain aging: Reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15(2), 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, S. M. (2005). Thalamic relays and cortical functioning. Progress in Brain Research, 149, 107–126.

    Article  PubMed  Google Scholar 

  • Smith, D. B., Michalewski, H. J., Brent, G. A., & Thompson, L. W. (1980). Auditory averaged evoked potentials and aging: factors of stimulus, task and topography. Biological Psychology, 11(2), 135–151.

    Article  PubMed  CAS  Google Scholar 

  • Snell, K. B., & Frisina, D. R. (2000). Relationships among age-related differences in gap detection and word recognition. Journal of the Acoustical Society of America, 107(3), 1615–1626.

    Article  PubMed  CAS  Google Scholar 

  • Soufflet, L., & Boeijinga, P. H. (2005). Linear inverse solutions: Simulations from a realistic head model in MEG. Brain Topography, 18(2), 87–99.

    Article  PubMed  Google Scholar 

  • Teder, W., Alho, K., Reinikainen, K., & Naatanen, R. (1993). Interstimulus interval and the selective-attention effect on auditory ERPs: “N1 enhancement” versus processing negativity. Psychophysiology, 30(1), 71–81.

    Article  PubMed  CAS  Google Scholar 

  • Tervaniemi, M., & Hugdahl, K. (2003). Lateralization of auditory-cortex functions. Brain Research Review, 43(3), 231–246.

    Article  Google Scholar 

  • Tremblay, K. L., Piskosz, M., & Souza, P. (2002). Aging alters the neural representation of speech cues. Neuroreport, 13(15), 1865–1870.

    Article  PubMed  Google Scholar 

  • Tremblay, K. L., Piskosz, M., & Souza, P. (2003). Effects of age and age-related hearing loss on the neural representation of speech cues. Clinical Neurophysiology, 114(7), 1332–1343.

    Article  PubMed  Google Scholar 

  • Turner, J. G., Hughes, L. F., & Caspary, D. M. (2005). Affects of aging on receptive fields in rat primary auditory cortex layer V neurons. Journal of Neurophysiology, 94(4), 2738–2747.

    Article  PubMed  Google Scholar 

  • Tzourio, N., Massioui, F. E., Crivello, F., Joliot, M., Renault, B., & Mazoyer, B. (1997). Functional anatomy of human auditory attention studied with PET. Neuroimage, 5(1), 63–77.

    Article  PubMed  CAS  Google Scholar 

  • Wechsler, D. (1997). WAIS-III: administration and scoring manual: Wechsler adult intelligence scale-third edition. New York, NY: Psychological Corporation.

    Google Scholar 

  • Woldorff, M. G., Gallen, C. C., Hampson, S. A., Hillyard, S. A., Pantev, C., Sobel, D., et al. (1993). Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proceedings of the National Academy of Sciences of the United States of America, 90(18), 8722–8726.

    Article  PubMed  CAS  Google Scholar 

  • Yvert, B., Crouzeix, A., Bertrand, O., Seither-Preisler, A., & Pantev, C. (2001). Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cerebral Cortex, 11(5), 411–423.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the Institute of Gerontology at the University of Georgia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett A. Clementz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Boyd, M., Poon, L. et al. Age-Associated Hemispheric Asymmetry Reduction on the Auditory M100 to Nonverbal Stimuli. Brain Imaging and Behavior 1, 93–101 (2007). https://doi.org/10.1007/s11682-007-9009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-007-9009-9

Keywords

Navigation