Skip to main content

Advertisement

Log in

Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The cerebral cortex undergoes changes during normal ageing with increasing effect on cognition. Disruption of minicolumnar organization of neurons is found with increased cognitive impairment in primates. We measured the minicolumn spacing and organization of cells in Heschl’s gyrus (primary auditory cortex, A1), the Planum Temporale (Tpt, BA22), and middle temporal gyrus (MTG, BA21) of 17 normally aged human adults. Age-associated minicolumn thinning was found in temporal lobe association cortex (Tpt and MTG) but not primary auditory cortex (HG). Minicolumn thinning was also associated with greater plaque load, although this effect was present in all areas. The regional variability of age-associated minicolumn thinning reflects the regionally selective progression of tangle pathology in Alzheimer’s Disease (AD). The generalized effect of plaque load persists when controlling for age. Therefore plaque load combines with age to increase minicolumn thinning, which may reflect increasing risk of AD. Since old age is the greatest risk factor for dementia, the transition to dementia may involve an extension of normal ageing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arendt T (2003) Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the ‘Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog Neurobiol 71:83–248

    Article  PubMed  Google Scholar 

  2. Arendt T (2004) Neurodegeneration and plasticity. Int J Dev Neurosci 22:507–514

    Article  PubMed  CAS  Google Scholar 

  3. Arendt T, Schindler C, Bruckner MK, Eschrich K, Bigl V, Zedlick D, Marcova L (1997) Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein epsilon 4 allele. J Neurosci 17:516–529

    PubMed  CAS  Google Scholar 

  4. Arendt T, Bruckner MK, Gertz HJ, Marcova L (1998) Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurons that retain their capacity of plastic remodelling in the adult brain. Neuroscience 83:991–1002

    Article  PubMed  CAS  Google Scholar 

  5. Armstrong RA, Cairns NJ, Lantos PL (1997) Dementia with Lewy bodies: clustering of Lewy bodies in human patients. Neurosci Lett 224:41–44

    Article  PubMed  CAS  Google Scholar 

  6. Armstrong RA, Cairns NJ, Lantos PL (1998) Clustering of Pick bodies in patients with Pick’s disease. Neurosci Lett 242:81–84

    Article  PubMed  CAS  Google Scholar 

  7. Buldyrev SV, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, Stanley HE, Urbanc B, Hyman BT (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci USA 97:5039–5043

    Article  PubMed  CAS  Google Scholar 

  8. Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001) Lateralization of minicolumns in human Planum Temporale is absent in nonhuman primate cortex. Brain Behav Evol 57(6):349–358

    Article  PubMed  CAS  Google Scholar 

  9. Buxhoeveden D, Fobbs A, Roy E, Casanova M (2002) Quantitative comparison of radial cell columns in children with Down’s syndrome and controls. J Intellect Disabil Res 46:76–81

    Article  PubMed  CAS  Google Scholar 

  10. Bai L, Hof PR, Standaert DG, Xing Y, Nelson SE, Young AB, Magnusson KR (2004) Changes in the expression of the NR2B subunit during ageing in macaque monkeys. Neurobiol Ageing 25(2):201–208

    Article  CAS  Google Scholar 

  11. Chance SA, Casanova MF, Switala AE, Buxhoeveden D, Crow TJ (2005) Asymmetries of minicolumnar structure in human Heschl’s gyrus and Planum Temporale (submitted)

  12. Chance SA, Walker M, Crow TJ (2005) Reduced density of calbindin immunoreactive interneurons in the Planum Temporale in Schizophrenia. Brain Res 1046:32–37

    Article  PubMed  CAS  Google Scholar 

  13. Colombo JA, Quinn B, Puissant V (2002) Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res Bull 58:235–242

    Article  PubMed  CAS  Google Scholar 

  14. Cruz L, Roe DL, Urbanc B, Cabral H, Stanley HE, Rosene DL (2004) Age-related reduction in microcolumnar structure in area 46 of the rhesus monkey correlates with behavioral decline. Proc Natl Acad Sci USA 101:15846–15851

    Article  PubMed  CAS  Google Scholar 

  15. Del Rio MR, DeFelipe J (1995) A light and electron microscopic study of calbindin D-28k immunoreactive double bouquet cells in the human temporal cortex. Brain Res 690:133–140

    Article  PubMed  Google Scholar 

  16. Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13(9):950–961

    Article  PubMed  Google Scholar 

  17. Elston GN, Rosa MG (2000) Pyramidal cells, patches, and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. J Neurosci 20:RC117

    PubMed  CAS  Google Scholar 

  18. Geula C (1998) Abnormalities of neural circuitry in Alzheimer’s disease: hippocampus and cortical cholinergic innervation. Neurology 51(Suppl 1):S18–S29

    PubMed  CAS  Google Scholar 

  19. Greene JR, Radenahmad N, Wilcock GK, Neal JW, Pearson RC (2001) Accumulation of calbindin in cortical pyramidal cells with ageing; a putative protective mechanism which fails in Alzheimer’s disease. Neuropathol Appl Neurobiol 27:339–342

    Article  PubMed  CAS  Google Scholar 

  20. Hiorns RW, Neal JW, Pearson RC, Powell TP (1991) Clustering of ipsilateral cortico-cortical projection neurons to area 7 in the rhesus monkey. Proc Biol Sci 246:1–9

    Article  PubMed  CAS  Google Scholar 

  21. Hof PR, Duan H, Page TL, Einstein M, Wicinski B, He Y, Erwin JM, Morrison JH (2002) Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Res 928(1–2):175–186

    Article  PubMed  CAS  Google Scholar 

  22. Hof PR, Morrison JH (2004) The ageing brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27:607–613

    Article  PubMed  CAS  Google Scholar 

  23. Iritani S, Niizato K, Emson PC (2001) Relationship of calbindin D28K-immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer’s disease. Neuropathology 21:162–167

    Article  PubMed  CAS  Google Scholar 

  24. Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386(4):661–680

    Article  PubMed  CAS  Google Scholar 

  25. Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M, Treml M (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. Cereb Cortex 11(6):558–571

    Article  PubMed  CAS  Google Scholar 

  26. Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529

    Article  PubMed  CAS  Google Scholar 

  27. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486

    PubMed  CAS  Google Scholar 

  28. Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Barnetson L (1996) Clustering of pathological features in Alzheimer’s disease: clinical and neuroanatomical aspects. Dementia 7:121–127

    Article  PubMed  CAS  Google Scholar 

  29. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353

    Article  PubMed  CAS  Google Scholar 

  30. Ostroff JM, McDonald KL, Schneider BA, Alain C (2003) Ageing and the processing of sound duration in human auditory cortex. Hear Res 181(1–2):1–7

    Article  PubMed  Google Scholar 

  31. Peters A, Sethares C (2002) Ageing and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol 442(3):277–291

    Article  PubMed  Google Scholar 

  32. Woolf NJ (1996) Global and serial neurons form a hierarchically arranged interface proposed to underlie memory and cognition. Neuroscience 74:625–651

    Article  PubMed  CAS  Google Scholar 

  33. Xiang Z, Huguenard JR, Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a fellowship from the TJ Crow Psychosis Trust, UK, and project grants RO1 MH62654 and RO1 MH69 from the NIMH, USA. Thanks to Mary Walker (University of Oxford, UK) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Chance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chance, S.A., Casanova, M.F., Switala, A.E. et al. Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathol 111, 459–464 (2006). https://doi.org/10.1007/s00401-005-0014-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-005-0014-z

Keywords

Navigation