Skip to main content
Log in

Effects of Aging and Background Babble Noise on Speech Perception Processing: An fMRI Study

  • Published:
Neurophysiology Aims and scope

Speech perception processing in a noisy environment is subjected to age-related decline. We used functional magnetic resonance imaging (fMRI) to examine cortical activation associated with such processing across four groups of participants with age ranges of 23–29, 30–37, 41–47 and 50–65 years old. All participants performed a forward repeat task in quiet environment (SQ) and in the presence of multi-talker babble noise (SN; 5-dB signal-to-noise ratio, SNR). Behavioral test results demonstrated a decrease in the performance accuracy associated with increasing age for both SQ and SN. However, a significant difference in the performance accuracy between these conditions could only be seen among the elderly (60–65 years old) subjects. The fMRI results across the four age groups showed a nearly similar pattern of brain activation in the auditory, speech, and attention areas during SQ and SN. Comparisons between SQ and SN demonstrated significantly lower brain activation in the left precentral gyrus, left postcentral gyrus, left Heschly’s gyrus, and right middle temporal gyrus under the latter condition. Other activated brain areas showed no significant differences in brain activation between SQ and SN. The decreases in cortical activation in the activated regions positively correlated with the decrease in the behavioral performance across age groups. These findings are discussed based on a dedifferentiation hypothesis that states that increased brain activation among older participants, as compared to young participants, is due to the age-related deficits in neural communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Martin, M. A. James, and J. F. Jerger, “Some effects of aging on central auditory processing,” J. Rehab. Res. Develop., 42, No. 2, 25-44 (2005).

    Article  Google Scholar 

  2. C. M. P. Wong, J. X. Jin, G. M. Gunasekera, et al., “Aging and cortical mechanism in speech perception in noise,” Neuropsychology, 47, 693-703 (2009).

    Article  Google Scholar 

  3. R. J. Salvi, A. H. Lockwood, R. D. Frisina, et al., “PET imaging of the normal human auditory system: responses to speech in quiet and in background noise,” Hearing Res., 170, 96-106 (2002).

    Article  CAS  Google Scholar 

  4. J. Walton, H. Simon, and R. D. Frisina, “Age-related alteration in the neural coding of envelope periodicities,” J. Neurophysiol., 88, 565-578 (2002).

    Article  PubMed  Google Scholar 

  5. T. Shimizu, K. Makishima, M. Yoshida, and H. Yamaghisi, “Effects of background noise of English speech for japanese listeners,” Auris Nasus Larynx, 29, 121-125 (2002).

    Article  PubMed  Google Scholar 

  6. R. Cabeza, “Hemispheric asymmetry reduction in older adults: the Harold Model,” Psychol. Aging, 17, 85-100 (2002).

    Article  PubMed  Google Scholar 

  7. R. Cabeza, N. D. Anderson, J. K. Locantore, and A. R. McIntosh, “Aging gracefully: compensatory brain activity in high-performing older adults,” NeuroImage, 17, 1394-1402 (2002).

    Article  PubMed  Google Scholar 

  8. K. Z. H. Li and U. Lindenberger, “Relations between aging sensory/sensorimotor and cognitive functions,” Neurosci. Biobehav. Rev., 26, No. 7, 777-783 (2002).

    Article  PubMed  Google Scholar 

  9. D. C. Park and A. H. Gutchess, “Aging, cognition, and culture: a neuroscientific perspective,” Neurosci. Biobehav. Rev., 26, 859-867 (2002).

    Article  PubMed  Google Scholar 

  10. J. D. Schmahmann and D. N. Pandya, “Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems,” Cortex, 44, No. 8, 1037-1066 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. M. Mather and L. L. Carstensen, “Aging and motivated cognition: the positivity effect in attention and memory,” Trends Cogn. Sci., 9, 296-502 (2005).

    Article  Google Scholar 

  12. P. A. Reuter-Lorenz, J. Jonides, E. E. Smith, et al., “Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET,” J. Cogn. Neurosci., 12, 174-187 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. C. L. Grady, “Introduction to the special section on aging, cognition, and neuroimaging,” Psychol. Aging, 17, 3-6 (2002).

    Article  PubMed  Google Scholar 

  14. C. L. Grady, A. R. McIntosh, S. Beig, et al., “Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease,” J. Neurosci., 23, 986-993 (2003).

    CAS  PubMed  Google Scholar 

  15. P. A. Reuter-Lorenz and C. Lustig, “Brain aging: reorganizing discoveries about the aging mind,” Current Opin. Neurobiol., 15, 245-251 (2005).

    Article  CAS  Google Scholar 

  16. R. Cabeza, S. M. Daselaar, F. Dolcos, et al., “Task independence and task specific age effects on brain activity during working memory, visual attention and episodic retrieval,” Cerebr. Cortex, 14, No. 4, 364-375 (2004).

    Article  Google Scholar 

  17. R. C. Oldfield, “The assessment and analysis of handedness: the Edinburgh inventory,” Neuropsychologia, 9, 97-113 (1971).

    Article  CAS  PubMed  Google Scholar 

  18. H. A. Manan, A. N. Yusoff, E. A. Franz, and S. Z.-M. S. Mukari, “The effects of background noise on brain activity using speech stimuli on healthy young adults,” Neurol. Psychiat. Brain Res., 19, 180-191 (2013).

    Article  Google Scholar 

  19. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “Mini-mental state. A practical method for grading the cognitive state of patient for clinician,” J. Psychiat. Res., 12, 189-198 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. C. W. Turner, B. J. Kwon, C. Tanaka, et al., “Frequencyweighting functions for broadband speech as estimated by a correlational method,” J. Acoust. Soc. Am., 104, No. 3, 1580-1585.

  21. H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “Age-related brain activation during forward and backward verbal memory repeat tasks,” Neurol. Psychiat. Brain Res., 20, No. 4, 76-86 (2014).

    Article  Google Scholar 

  22. H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “The effects of aging on the brain activation pattern during speech stimuli task: an fMRI study,” Aging Clin. Exp. Res., 27, No. 1, 27-36 (2015).

    Article  PubMed  Google Scholar 

  23. H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “The effects of aging to a frontoparietal network and its impact on cognitive aging during backward repeat task,” Neurol. Psychiat. Brain Res., 21, No. 1, 64-72 (2015).

    Article  Google Scholar 

  24. H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “Hippocampal-cerebellar involvement in enhancement of performance in word-based BRT with the presence of background noise: an initial fMRI study,” Psychol. Neurosci., 5, No. 2, 247-256 (2012), doi: https://doi.org/10.3922/j.psns.2012.2.16.

    Article  Google Scholar 

  25. H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “Age-related laterality shifts in auditory and attention networks with normal ageing: Effects on a working memory task,” Neurol. Psychiat. Brain Res., 19, 207-215 (2013).

    Article  Google Scholar 

  26. D. A. Hall, M. P. Haggard, M. A. Akeroyd, et al., “Sparse” temporal sampling in auditory fMRI,” Human Brain Mapp., 7, No. 3, 213-223 (1999).

  27. A. N. Yusoff, M. M. Ayob, M. H. Hashim, and M. I. Kassim, “Analisis data pengimejan resonans magnet kefungsian pra pemprosesan ruang menggunakan kaedah pemetaan statistik ber parameter,” J. Sains Kesihatan Malaysia, 4, No. 1, 21-36 (2006).

    Google Scholar 

  28. A. N. Yusoff, M. Mohamad, M. M. Ayob, and M. H. Hashim, “Brain activations evoked by passive and active listening: A preliminary study on multiple subjects (Pengaktifan otak yang dicetus oleh pendengaran pasif dan aktif: Satukajian permulaan keatas subjek berbilang),” J. Sains Kesihatan Malaysia, 6, No. 1, 35-60 (2008).

    Google Scholar 

  29. A. N. Yusoff, M. Mohamad, K. Abdul Hamid, et al., “Characteristics of the primary motor (M1) and supplementary motor (SMA) areas during robust unilateral finger tapping task,” J. Sains Kesihatan Malaysia, 8, No. 2, 43-49 (2010).

    Google Scholar 

  30. A. N. Yusoff, “Kesan day a dan laju tepikan jari ke atas pengaktifan korteks berkaitan motor,” J. Sains Kesihatan Malaysia, 11, No. 2, 41-49 (2013).

    Google Scholar 

  31. J. A. Maldjian, P. J. Laurienti, R. A. Kraft, and J. H. Burdette, “An automated method for neuroanatomic and cytoarchitectonical tas-based interrogation of fMRI data sets,” NeuroImage, 19, 1233-1239 (2003).

    Article  PubMed  Google Scholar 

  32. T. Kujala and E. Brattico, “Detrimental noise effects on brain’s speech functions,” Biol. Psychol., 81, 135-143 (2009).

    Article  PubMed  Google Scholar 

  33. T. Kujala, Y. Shtyrov, I. Winkler, et al., “Long-term exposure to noise impairs cortical sound processing and attention control,” Psychophysiology, 41, 875-881 (2004).

    Article  PubMed  Google Scholar 

  34. M. C. Stevens, V. D. Calhoun, and K. A. Kiehl, “Hemispheric differences in hemodynamics elicited by auditory oddball stimuli,” NeuroImage, 26, No. 3, 782-792 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. M. I. Posner and S. E. Petersen, “The attention system of the human brain,” Annu. Rev. Neurosci., 13, 25-42 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. R. Cabeza and N. A. Dennis, “Frontal lobes and aging; Deterioration and compensation,” in: Principles of Frontal Lobe Function, D. T. Stuss and R. T. Knight (eds.), Oxford Univ. Press, New York (2012), pp. 628-652.

    Google Scholar 

  37. S. Lim, C. E. Han, P. J. Uhlhaas, and M. Kaiser, “Preferential detachment during human brain development: Age- and sex-specific structural connectivity in diffusion tensor imaging (DTI) data,” Cerebr. Cortex, First published online: December 15, 2013, doi: https://doi.org/10.1093/cercor/bht33.

  38. K. J. Anstey, M. A. Luszcz, and L. Sanchez, “A reevaluation of the common factor theory of shared variance among age, sensory function, and cognitive function in older adults,” J. Gerontol. Psychol. Sci., Ser. B, 56, No. 1, 3-11 (2001).

    Article  Google Scholar 

  39. S. C. Li and U. Lindenberger. “Cross-level unification: a computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age,” in: Cogn. Neurosci. Memory, Hogrefe and Huber, Berlin (1999).

  40. T. A. Salthouse, “The processing-speed theory of adult age differences in cognition,” Psychol. Rev., 103, 403-428 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. G. Hickok and D. Poeppel, “The cortical organization of speech processing,” Nat. Rev. Neurosci., 8, No. 5, 393-402 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. A. H. Lockwood, R. J. Salvi, M. L. Coad, et al., “The functional anatomy of the normal human auditory system: Responses to 0.5 and 4.0 kHz tones at varied intensities,” Cerebr. Cortex, 9, 65-76 (1999).

    Article  CAS  Google Scholar 

  43. R. H. Benedict, A. H. Lookwood, J. L. Shucard, et al., “Functional neuroimaging of attention in auditory modality,” NeuroReport, 9, 121-126 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. D. Moss, L. M. Ward, and W. G. Sannita, “Stochastic resonance and sensory information processing: A tutorial and review of application,” Clin. Neurophysiol., 115, 267-281 (2004).

    Article  PubMed  Google Scholar 

  45. D. Rousseau and F. Chapeau-Blondeau, “Suprathreshold stochastic resonance and signal-to-noise ratio improvement in arrays of comparators,” Phys. Lett., 321, 280-290 (2004).

    Article  CAS  Google Scholar 

  46. Y. Yamamoto, I. Hidaka, D. Nozaki, et al., “Noiseinduced sensitization of human brain,” Physica A, 314, 53-60 (2002).

    Article  Google Scholar 

  47. D. R. Frisina and R. D. Frisina, “Speech recognition in noise and presbycusis: Relations to possible neural mechanism,” Hear. Res., 106, Nos. 1/2, 95-104 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Yusoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manan, H.A., Yusoff, A.N., Franz, E.A. et al. Effects of Aging and Background Babble Noise on Speech Perception Processing: An fMRI Study. Neurophysiology 49, 441–452 (2017). https://doi.org/10.1007/s11062-018-9707-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9707-5

Keywords

Navigation