Skip to main content
Log in

Materials’ Physics in Extremes: Akrology

  • Symposium: Structural Materials for the Americas
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An understanding of the behavior of materials in mechanical extremes has become a pressing need in order to exploit new environments. Any impulse consists of a cascade of deformation mechanisms starting with ultrafast and concluding with slower ones, yet these have not been suitably defined over the past years. This requirement has prompted the design of new experimental platforms and diagnostics and an increase in modern computer power. However, this effort has removed necessary focus on the operating suite of deformation mechanisms activated in loaded materials. This article reviews the material response and attempts to order physical pathways according to the length and time scales they operate within. A dimensionless constant is introduced to scale the contributions of component pathways by quantifying their completion with respect to the loading impulse applied. This concept is extended to suggest a new framework to describe the response to arbitrary insult and to show the relevance of particular techniques to component parts of the problem. The application of a step impulse via shock loading is shown to be the primary derivation experiment to address these needs and map components of the response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Wadsworth: Basic Research Needs for Materials Under Extreme Environments, BES, United States Department of Energy, Washington, DC, 2007, http://www.sc.doe.gov/bes/reports/abstracts.html#MUEE.

  2. N.K. Bourne, G.T. Gray III, and J.C.F. Millett: J. Appl. Phys., 2009, vol. 106 (9), p. 091301.

    Article  Google Scholar 

  3. M.F. Ashby: Materials Selection in Design, Pergamon Press, Oxford, UK, 1992.

  4. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36 (1), p. 81–93.

    Article  Google Scholar 

  5. D.L. Preston, D.L. Tonks, and D.C. Wallace: J. Appl. Phys., 2003, vol. 93, p. 211.

    Article  CAS  Google Scholar 

  6. D.J. Steinberg, S.G. Cochran, and M.W. Guinan: J. Appl. Phys., 1980, vol. 51, p. 1498.

    Article  CAS  Google Scholar 

  7. F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61 p. 1816.

    Article  CAS  Google Scholar 

  8. J.A. Zukas: Introduction to Hydrocodes, Elsevier, Oxford, UK, 2003.

  9. R.E. Smallman and R.J. Bishop: Modern Physical Metallurgy and Materials Engineering, 6th ed., Elsevier, Boston, MA, 1999.

  10. B.A. Remington, R.P. Drake, and D.D. Ryutov: Rev. Mod. Phys., 2006, vol. 78, pp. 755–807.

    Article  CAS  Google Scholar 

  11. M. Reiner: Phys. Today, 1964, vol. 17 p. 62.

    Article  Google Scholar 

  12. A. Kelly: Strong Solids, 2nd ed., Clarendon Press, Oxford, United Kingdom, 1973.

    Google Scholar 

  13. L.E. Malvern: Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Upper Saddle River, NJ, 1969.

  14. G.T. Gray III: in ASM Handbook, vol. 8, Mechanical Testing and Evaluation, H. Kuhn and D. Medlin, eds., ASM INTERNATIONAL, Materials Park, OH, 2000, pp. 530–38.

  15. N.K. Bourne, J.C.F. Millett, and G.T. Gray III: J. Mater. Sci., 2009, 44 (13), pp. 3319–43.

    Article  CAS  Google Scholar 

  16. B.R. Lawn and T.R. Wilshaw: Fracture of Brittle Solids, Cambridge University Press, Cambridge, United Kingdom, 1975.

    Google Scholar 

  17. N.K. Bourne: in Shock Compression of Condensed Matter 2009, M. Elert, W.T. Buttler, M.D. Furnish, W.W. Anderson, and W.G. Proud, eds., American Institute of Physics, Melville, New York, NY, 2009, pp. 993–99.

  18. N.K. Bourne, J.C.F. Millett, Z. Rosenberg, and N.H. Murray: J. Mech. Phys. Solids, 1998, vol. 46 (10), pp. 1887–1908.

    Article  CAS  Google Scholar 

  19. N.K. Bourne: Int. J. Imp. Eng., 2008, vol. 35, pp. 674–83.

    Article  Google Scholar 

  20. L. Davison and R.A. Graham: Phys. Rep., 1979, vol. 55, pp. 255–379.

    Article  CAS  Google Scholar 

  21. N.K. Bourne and G.T. Gray III: Proc. R. Soc. London A, 2005, vol. 460, pp. 3297–3312.

    Google Scholar 

  22. B.Y. Cao, M.A. Meyers, D.H. Lassila, M.S. Schneider, B.K. Kad, C.X. Huang, Y.B. Xu, D.H. Kalantar, and B.A. Remington: Mater. Sci. Eng. A, 200, vol. 409, pp. 270–81.

  23. D.E. Grady: J. Mech. Phys. Solids, 1988, vol. 36, pp. 353–84.

    Article  Google Scholar 

  24. D.R. Curran, L. Seaman, and D.A. Shockey: Phys. Today, 1977, vol. 30, p. 46.

    Article  CAS  Google Scholar 

  25. G.T. Gray III, N.K. Bourne, and B.L. Henrie: J. Appl. Phys., 2007, vol. 101, p. 093507.

    Article  Google Scholar 

  26. G.T. Gray III, L.M. Hull, J.R. Faulkner, M.E. Briggs, E.K. Cerreta, F.L. Addessio, and N.K. Bourne: in Shock Compression of Condensed Matter 2009, M. Elert, W.T. Buttler, M.D. Furnish, W.W. Anderson, and W.G. Proud, eds., American Institute of Physics, Melville, NY, 2009, pp. 1097–1103.

    Google Scholar 

  27. G.I. Kanel and V.E. Fortov: Adv. Mech., 1987, vol. 10, p. 3.

    Google Scholar 

  28. E. Moshe, S. Eliezer, Z. Henis, M. Werdiger, E. Dekel, Y. Horovitz, and S. Maman: Appl. Phys. Lett., 2000, vol. 76 (12), pp. 1555–57.

    Article  CAS  Google Scholar 

  29. S. Rothman, S. Bandyopadhyay, C.R.D. Brown, A.A. George, N. Gjshchkhmyj, R.S.R. Greedharee, T.M. Guymer, N. Park, M.C. Parsley, E. Price, and J.G. Turner: in Shock Compression of Condensed Matter 2009, M. Elert, W.T. Buttler, M.D. Furnish, and W.W. Anderson, eds., American Institute of Physics, Melville, NY, 2009, pp. 961–64.

    Google Scholar 

  30. S. Luo, D. Swift, T. Tierney, D. Paisley, G. Kyrala, R. Johnson, A. Hauer, O. Tschauner, and P. Asimow: High Press. Res., 2004, vol. 24, pp. 409–22.

    Article  CAS  Google Scholar 

  31. B.A. Remington, P. Allen, E.M. Bringa, J. Hawreliak, D. Ho, K.T. Lorenz, H. Lorenzana, J.M. McNaney, M.A. Meyers, S.W. Pollaine, K. Rosolankova, B. Sadik, M.S. Schneider, D. Swift, J. Wark, and B. Yaakobi: Mater. Sci. Technol., 2006, vol. 22 (4), pp. 474–88.

    Article  CAS  Google Scholar 

  32. W.H. Zurek: Nat. Phys., 2009, vol. 5 (3), pp. 181–88.

    Article  CAS  Google Scholar 

  33. K. Kadau, T.C. Germann, P.S. Lomdahl, R.C. Albers, J.S. Wark, A. Higginbotham, and B.L. Holian: Phys. Rev. Lett., 2007, vol. 96 (13), p. 135701.

    Article  Google Scholar 

Download references

Acknowledgments

These ideas have developed over my time spent working in, and advising on, the future directions of this field. I thank all of the colleagues and students who have contributed, particularly my groups in Cambridge, Shrivenham, and across AWE. These ideas could not have progressed without my many friends at the United States national labs and academia who have discussed these concepts with me, and I thank them for their patience. This paper was presented at the first TMS-ABM Materials Congress held in 2010. I thank the organizers for their invitation and look forward to many further meetings over future years. The excellent and helpful comments of the reviewers have added considerably to the picture presented here; I thank them for their patience in this effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Bourne.

Additional information

Manuscript submitted October 24, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourne, N.K. Materials’ Physics in Extremes: Akrology. Metall Mater Trans A 42, 2975–2984 (2011). https://doi.org/10.1007/s11661-011-0720-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0720-1

Keywords

Navigation