Skip to main content
Log in

Comparative study of nuclear masses in the relativistic mean-field model

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

With experimental masses updated from AME11, the predictive power of relativistic mean-field (RMF) mass model is carefully examined and compared with HFB-17, FRDM, WS*, and DZ28 mass models. In the relativistic mean-field model, the calculation with the PC-PK1 has improved significantly in describing masses compared to the TMA, especially for the neutron-deficient nuclei. The corresponding rms deviation with respect to the known masses falls to 1.4 MeV. Furthermore, it is found that the RMF mass model better describes the nuclei with large deformations. The rms deviation for nuclei with the absolute value of quadrupole deformation parameter greater than 0.25 falls to 0.93, crossing the 1 MeV accuracy threshold for the PC-PK1, which may indicate the new model is more suitable for those largely-deformed nuclei. In addition, the necessity of new high-precision experimental data to evaluate and develop the nuclear mass models is emphasized as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Weizsäcker C F. Zur theorie der Kernmassen (On the theory of nuclear masses). Z Phys, 1935, 96: 431–458

    Article  ADS  MATH  Google Scholar 

  2. Möller P, Nix J R, Myers W D, et al. Nuclear ground-state masses and deformations. Atom Data Nucl Data Tables, 1995, 59: 185–381

    Article  ADS  Google Scholar 

  3. Pearson J M, Nayak R C, Goriely S. Nuclear mass formula with Bogolyubov-enhanced shell-quenching: Application to r process. Phys Lett B, 1996, 387: 455–459

    Article  ADS  Google Scholar 

  4. Wang N, Liang Z, Liu M, et al. Mirror nuclei constraint in nuclear mass formula. Phys Rev C, 2010, 82: 044304

    Article  ADS  Google Scholar 

  5. Sun B, Montes F, Geng L S, et al. Application of the relativistic mean-field mass model to the r process and the influence of mass uncertainties. Phys Rev C, 2008, 78: 025806

    Article  ADS  Google Scholar 

  6. Niu ZM, Sun B, Meng J. Influence of nuclear physics inputs and astrophysical conditions on the Th/U chronometer. Phys Rev C, 2009, 80: 065806

    Article  ADS  Google Scholar 

  7. Sun B H, Meng J. Challenge on the astrophysical r-process calculation with nuclear mass models. Chin Phys Lett, 2008, 25: 2429–2431

    Article  ADS  Google Scholar 

  8. Meng J, Niu Z M, Liang H Z, et al. Selected issues at the interface between nuclear physics and astrophysics as well as the standard model. Sci China-Phys Mech Astron, 2011, 54: s119–s123

    Article  ADS  Google Scholar 

  9. Li Z, Niu Z M, Sun B, et al. WLW mass model in nuclear r-process calculations. Acta Phys Sin, 2012, 61: 072601

    Google Scholar 

  10. Zhang W H, Niu Z M, Wang F, et al. Uncertainties of nucleo-chronometers from nuclear physics inputs. Acta Phys Sin, 2012, 61: 112601

    Google Scholar 

  11. Niu ZM, Niu Y F, Liang H Z, et al. β-decay half-lives of neutron-rich nuclei and matter flow in the r-process. arXiv:1210.0680

  12. Goriely S, Chamel N, Pearson J M. Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: Crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing. Phys Rev Lett, 2009, 102: 152503

    Article  ADS  Google Scholar 

  13. Vretenar D, Afanasjev A V, Lalazissis G A, et al. Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure. Phys Rep, 2005, 409: 101–259

    Article  ADS  Google Scholar 

  14. Meng J, Toki H, Zhou S G, et al. Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog Part Nucl Phys, 2006, 57: 470–563

    Article  ADS  Google Scholar 

  15. Bürvenich T, Madland D G, Maruhn J A, et al. Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model. Phys Rev C, 2002, 65: 044308

    Article  ADS  Google Scholar 

  16. Li Z P, Zhang Y, Vretenar D, et al. Single-particle resonances in a deformed relativistic potential. Sci China-Phys Mech Astron, 2010, 53: 773–778

    Article  ADS  MATH  Google Scholar 

  17. Li Z X, Yao J M, Chen H. Superallowed Fermi transitions in RPA with a relativistic point-coupling energy functional. Sci China-Phys Mech Astron, 2011, 54: 1131–1136

    Article  ADS  Google Scholar 

  18. Yao J M, Peng J, Meng J, et al. g factors of nuclear low-lying states: A covariant description. Sci China-Phys Mech Astron, 2011, 54: 198–203

    Article  ADS  Google Scholar 

  19. Li J, Meng J, Ring P, et al. Relativistic description of second-order correction to nuclear magnetic moments with point-coupling residual interaction. Sci China-Phys Mech Astron, 2011, 54: 204–209

    Article  ADS  Google Scholar 

  20. Song C Y, Li Z P, Vretenar D, et al. Microscopic analysis of spherical to gamma-soft shape transitions in Zn isotopes. Sci China-Phys Mech Astron, 2011, 54: 222–226

    ADS  Google Scholar 

  21. Geng L S, Toki H, Meng J. Deformations and charge radii—nuclear ground-state properties in the relativistic mean field model. Prog Theor Phys, 2005, 113: 785–800

    Article  ADS  Google Scholar 

  22. Sugahara Y, Toki H. Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms. Nucl Phys A, 1994, 579: 557–572

    Article  ADS  Google Scholar 

  23. Zhao P W, Li Z P, Yao J M, et al. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys Rev C, 2010, 82: 054319

    Article  ADS  Google Scholar 

  24. Audi G, Bersillon O, Blachot J, et al. The NUBASE evaluation of nuclear and decay properties. Nucl Phys A, 2003, 729: 3–128

    Article  ADS  Google Scholar 

  25. Lunney D, Pearson J M, Thibault C. Recent trends in the determination of nuclear masses. Rev Mod Phys, 2003, 75: 1021–1082

    Article  ADS  Google Scholar 

  26. Sun B, Knobel R, Litvinov Y A, et al. Nuclear structure studies of short-lived neutron-rich nuclei with the novel large-scale isochronous mass spectrometry at the FRS-ESR facility. Nucl Phys A, 2008, 812: 1–12

    Article  ADS  Google Scholar 

  27. Mendoza-Temis J, Morales I, Barea J, et al. Testing the predictive power of nuclear mass models. Nucl Phys A, 2008, 812: 28–43

    Article  ADS  Google Scholar 

  28. Litvinov Y A, Sobiczewski A, Parkhomenko A, et al. Description of heavy-nuclei masses by macroscopic-microscopic models. Int J Mod Phys E, 2012, 21: 1250038

    Article  ADS  Google Scholar 

  29. Duflo J, Zuker A P. Microscopic mass formulas. Phys Rev C, 1995, 52: R23–R27

    Article  ADS  Google Scholar 

  30. Ring P, Schuck P. The Nuclear Many-body Problem. Heidelberg: Springer-Verlag, 1980

    Book  Google Scholar 

  31. Villars F. The collective model of nuclei. Annu Rev Nucl Sci, 1957, 7: 185–230

    Article  ADS  Google Scholar 

  32. Kamlah A. An approximation for rotation-projected expectation values of the energy for deformed nuclei and a derivation of the cranking variational equation. Z Phys A, 1968, 216: 52–64

    Google Scholar 

  33. Scheid W, Greiner W. Theory of projection of spurious center of mass and rotational states from many-body nuclear wave functions. Ann Phys, 1968, 48: 493–525

    Article  ADS  Google Scholar 

  34. Fink B, Kolb D, Scheid W, et al. Spurious rotational states in deformed nuclear shell models. Ann Phys, 1972, 69: 375–399

    Article  ADS  Google Scholar 

  35. Tondeur F, Goriely S, Pearson J M, et al. Towards a Hartree-Fock mass formula. Phys Rev C, 2000, 62: 024308

    Article  ADS  Google Scholar 

  36. Van Schelt J, Lascar D, Savard G, et al. Mass measurements near the rprocess path using the Canadian Penning Trapmass spectrometer. Phys Rev C, 2012, 85: 045805

    Article  ADS  Google Scholar 

  37. Marmier P, Sheldon E. Physics of Nuclei and Particles (Vol. I). New York: Academic Press, 1969

    Google Scholar 

  38. Sun B H, Zhao P W, Meng J. Mass prediction of proton-rich nuclides with the Coulomb displacement energies in the relativistic pointcoupling model. Sci Chin-Phys Mech Astron, 2011, 54: 210–214

    Article  ADS  MATH  Google Scholar 

  39. Dong J M, Zuo W, Scheid W. Correlation between α-decay energies of superheavy nuclei involving the effects of symmetry energy. Phys Rev Lett, 2011, 107: 012501

    Article  ADS  Google Scholar 

  40. Fu G J, Lei Y, Jiang H, et al. Description and evaluation of nuclear masses based on residual proton-neutron interactions. Phys Rev C, 2011, 84: 034311

    Article  ADS  Google Scholar 

  41. Jiang H, Fu G J, Sun B, et al. Predictions of unknown masses and their applications. Phys Rev C, 2012, 85: 054303

    Article  ADS  Google Scholar 

  42. Li B A, Chen L W, Ko C M. Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys Rep, 2008, 464: 113–281

    Article  ADS  Google Scholar 

  43. Chen LW, Ko C M, Li B A. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models. Phys Rev C, 2007, 76: 054316

    Article  ADS  Google Scholar 

  44. Chen L W, Ko C M, Li B A. Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys Rev Lett, 2005, 94: 032701

    Article  ADS  Google Scholar 

  45. Chen L W, Ko C M, Li B A. Nuclear matter symmetry energy and the neutron skin thickness of heavy nuclei. Phys Rev C, 2005, 72: 064309

    Article  ADS  Google Scholar 

  46. Trippa L, Coló G, Vigezzi E. Giant dipole resonance as a quantitative constraint on the symmetry energy. Phys Rev C, 2008, 77: 061304 (R)

    Article  ADS  Google Scholar 

  47. Cao L G, Ma Z Y. Symmetry energy and isovector giant dipole resonance in finite nuclei. Chin Phys Lett, 2008, 25: 1625–1628

    Article  ADS  Google Scholar 

  48. Liu M, Wang N, Li Z X, et al. Nuclear symmetry energy at subnormal densities from measured nuclear masses. Phys Rev C, 2010, 82: 064306

    Article  ADS  Google Scholar 

  49. Jiang W Z. Effects of the density dependence of the nuclear symmetry energy on the properties of superheavy nuclei. Phys Rev C, 2010, 81: 044306

    Article  ADS  Google Scholar 

  50. Dong J M, Zuo W, Gu J Z, et al. Density dependence of the nuclear symmetry energy constrained by mean-field calculations. Phys Rev C, 2012, 85: 034308

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongMing Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, X., Heng, T., Niu, Z. et al. Comparative study of nuclear masses in the relativistic mean-field model. Sci. China Phys. Mech. Astron. 55, 2414–2419 (2012). https://doi.org/10.1007/s11433-012-4943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4943-y

Keywords

Navigation