Skip to main content
Log in

Selected issues at the interface between nuclear physics and astrophysics as well as the standard model

  • Research Paper
  • Radioactive Nuclear Beam Physics and Nuclear Astrophysics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The density functional theory (DFT) with a minimal number of parameters allows a very successful phenomenological description of ground state properties of nuclei all over the periodic table. The recent developments on the application of the covariant density functional theory as well as its extensions by the group in Beijing for a series of interests and hot topics in nuclear astrophysics and nuclear structure are reviewed, including the rapid neutron-capture process, Th/U chronometer, and isospin corrections for superallowed β transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walecka J D. Theory of highly condensed matter. Ann Phys (NY), 1974, 83: 491–529

    Article  ADS  Google Scholar 

  2. Vretenar D, Afanasjev A V, Lalazissis G A, et al. Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure. Phys Rep, 2005, 409: 101–259

    Article  ADS  Google Scholar 

  3. Meng J, Toki H, Zhou S G, et al. Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog Part Nucl Phys, 200, 57: 470–563

  4. Long W H, Giai N V, Meng J. Density-dependent relativistic Hartree-Fock approach. Phys Lett B, 2006, 640: 150–154

    Article  ADS  Google Scholar 

  5. Arima A, Harvery M, Shimizu K. Pseudo LS coupling and pseudo SU3 coupling schemes. Phys Lett B, 1969, 30: 517–522

    ADS  Google Scholar 

  6. Hecht K T, Adler A. Generalized seniority for favored J≠0 pairs inmixed configurations. Nucl Phys A, 1969, 137: 129–143

    Article  ADS  Google Scholar 

  7. Ginocchio J N. Pseudospin as a relativistic symmetry. Phys Rev Lett, 1997, 78: 436–439

    Article  ADS  Google Scholar 

  8. Meng J, Sugawara-Tanabe K, Yamaji S, et al. Pseudospin symmetry in relativistic mean field theory. Phys Rev C, 1998, 58: R628–R631

    Article  ADS  Google Scholar 

  9. Meng J, Sugawara-Tanabe K, Yamaji S, et al. Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line. Phys Rev C, 1999, 59: 154–163

    Article  ADS  Google Scholar 

  10. Zhou S G, Meng J, Ring P. Spin symmetry in the antinucleon spectrum. Phys Rev Lett, 2003, 91: 262501

    Article  ADS  Google Scholar 

  11. Sharma M M, Lalazissis G A, Ring P. Anomaly in the charge radii of Pb isotopes. Phys Lett B, 1993, 317: 9–13

    Article  ADS  Google Scholar 

  12. Brockmann R, Machleidt R. Relativistic nuclear structure. I. Nuclear matter. Phys Rev C, 1990, 42: 1965–1980

    Article  ADS  Google Scholar 

  13. Brockmann R, Toki H. Relativistic density-dependent Hartree approach for finite nuclei. Phys Rev Lett, 1992, 68: 3408–3411

    Article  ADS  Google Scholar 

  14. Haseltine E. The 11 greatest unanswered questions of Physics. Discover, 2002, 23(2): 37–43

    Google Scholar 

  15. Sun B, Knöbel R, Litvinov Y A, et al. Nuclear structure studies of shortlived neutron-rich nuclei with the novel large-scale isochronous mass spectrometry at the FRS-ESR facility. Nucl Phys A, 2008, 812: 1–12

    Article  ADS  Google Scholar 

  16. Sun B, Knöbel R, Litvinov Y A, et al. Large-scale mass measurements of short-lived nuclides with the isochronous mass spectrometry at GSI. Int J Mod Phys E, 2009, 18: 346–351

    Article  ADS  Google Scholar 

  17. Geng L S, Toki H, Meng J. Masses, deformations and charge radiinuclear ground-state properties in the relativistic mean field model. Prog Theor Phys, 2005, 113: 785–800

    Article  ADS  Google Scholar 

  18. Sun B, Montes F, Geng L S, et al. Application of the relativistic meanfield mass model to the r-process and the influence of mass uncertainties. Phys Rev C, 2008, 78: 025806

    Article  ADS  Google Scholar 

  19. Sun B, Meng J. Challenge on the astrophysical r-process calculation with nuclear mass models. Chin Phys Lett, 2008, 25: 2429–2431

    Article  ADS  Google Scholar 

  20. Audi G, Bersillon O, Blachot J, et al. The NUBASE evaluation of nuclear and decay properties. Nucl Phys A, 2003, 729: 3–128

    Article  ADS  Google Scholar 

  21. Möller P, Pfeiffer B, Kratz K L. New calculations of gross β-decay properties for astrophysical applications: Speeding-up the classical r process. Phys Rev C, 2003, 67: 055802

    Article  ADS  Google Scholar 

  22. Cayrel R, Hill V, Beers T, et al. Measurement of stellar age from uranium decay. Nature, 2001, 409: 691–692

    Article  ADS  Google Scholar 

  23. Cowan J J, Sneden C, Burles S, et al. The chemical composition and age of the metal-poor halo star BD +17°3248. Astrophys J, 2002, 572: 861–879

    Article  ADS  Google Scholar 

  24. Frebel A, Christlieb N, Norris J E, et al. Discovery of HE 1523-0901, a strongly r-process-enhanced metal-poor star with detected uranium. Astrophys J, 2007, 660: L117–L120

    Article  ADS  Google Scholar 

  25. Goriely S, Chamel N, Pearson J M. Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: Crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing. Phys Rev Lett, 2009, 102: 152503

    Article  ADS  Google Scholar 

  26. Koura H, Tachibana T, Uno M, et al. Nuclidic mass formula on a spherical basis with an improved even-odd term. Prog Theor Phys, 2005, 113: 305–325

    Article  ADS  Google Scholar 

  27. Duflo J, Zuker A P. Microscopic mass formulas. Phys Rev C, 1995, 52: R23–R27

    Article  ADS  Google Scholar 

  28. Goriely S. Nuclear inputs for astrophysics applications. AIP Conf Proc, 2000, 529: 287–294

    Article  ADS  Google Scholar 

  29. Pearson J M, Nayak R C, Goriely S. Nuclear mass formula with Bogolyubov-enhanced shell-quenching: Application to r-process. Phys Lett B, 1996, 387: 455–459

    Article  ADS  Google Scholar 

  30. Möller P, Nix J R, Myers W D, et al. Nuclear ground-state masses and deformations. Atom Data Nucl Data Tables, 1995, 59: 185–381

    Article  ADS  Google Scholar 

  31. Niu Z, Sun B, Meng J. Influence of nuclear physics inputs and astrophysical conditions on the Th/U chronometer. Phys Rev C, 2009, 80: 065806

    Article  ADS  Google Scholar 

  32. Cowan J J, Pfeiffer B, Kratz K L, et al. R-process abundances and chronometers in metal-poor stars. Astrophys J, 1999, 521: 194–205

    Article  ADS  Google Scholar 

  33. Westin J, Sneden C, Gustafsson B, et al. The r-process-enriched lowmetallicity giant HD 115444. Astrophys J, 2000, 530: 783–799

    Article  ADS  Google Scholar 

  34. Goriely S, Arnould M. Actinides: How well do we know their stellar production. Astron Astrophys, 2001, 379: 1113–1122

    Article  ADS  Google Scholar 

  35. Hill V, Plez B, Cayrel R, et al. First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001. Astron Astrophys, 2002, 387: 560–579

    Article  ADS  Google Scholar 

  36. Schatz H, Toenjes R, Pfeiffer B, et al. Thorium and uranium chronometers applied to cs 31082-001. Astrophys J, 2002, 579: 626–638

    Article  ADS  Google Scholar 

  37. Sneden C, Cowan J J, Lawler J E, et al. The extremely metal-poor, neutron capture-rich star CS 22892-052: A comprehensive abundance analysis. Astrophys J, 2003, 591: 936–953

    Article  ADS  Google Scholar 

  38. Li J, Zhao G. Radioactive ages of metal-poor halo stars. Chin J Astron Astrophys, 2004, 4: 75–87

    Article  ADS  Google Scholar 

  39. Dauphas N. The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars. Nature, 2005, 435: 1203–1205

    Article  ADS  Google Scholar 

  40. Ivans I I, Simmerer J, Sneden C, et al. Near-ultraviolet observations of HD 221170: New insights into the nature of r-process-rich stars. Astrophys J, 2006, 645: 613–633

    Article  ADS  Google Scholar 

  41. Kratz K L, Farouqi K, Pfeiffer B, et al. Explorations of the r-processes: Comparisons between calculations and observations of low-metallicity stars. Astrophys J, 2007, 662: 39–52

    Article  ADS  Google Scholar 

  42. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys J, 1999, 517: 565–586

    Article  ADS  Google Scholar 

  43. Krauss L M, Chaboyer B. Age estimates of globular clusters in theMilky Way: Constraints on Cosmology. Science, 2003, 299: 65–69

    Article  ADS  Google Scholar 

  44. Hansen B M S, Richer H B, Fahlman G G, et al. Hubble space telescope observations of the white dwarf cooling sequence of M4. Astrophys J Suppl Ser, 2004, 155: 551–576

    Article  ADS  Google Scholar 

  45. Komatsu E, Dunkley J, Nolta MR, et al. Five-year Wilkinson microwave anisotropy probe observations: Cosmological interpretation. Astrophys J Suppl Ser, 2009, 180: 330–376

    Article  ADS  Google Scholar 

  46. Lan M X, Li M, Li X D, et al. Cosmic age test in inhomogeneous cosmological models mimicking ΛCDM on the light cone. Phys Rev D, 2010, 82: 023516

    Article  ADS  Google Scholar 

  47. Hardy J C, Towner I S. Superallowed 0+ → 0+ nuclear β decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model. Phys Rev C, 2009, 79: 055502

    Article  ADS  Google Scholar 

  48. Thompson D. The Kobayashi-Maskawa matrix element |V ud| from neutron β-decay. J Phys G, 1990, 16: 1423–1426

    Article  ADS  Google Scholar 

  49. Počanić D, Frlež E, Baranov V A, et al. Precise measurement of the π +π 0 e + ν branching ratio. Phys Rev Lett, 2004, 93: 181803

    Article  ADS  Google Scholar 

  50. Naviliat-Cuncic O, Severijns N. Test of the conserved vector current hypothesis in T = 1/2 mirror transitions and new determination of |V ud|. Phys Rev Lett, 2009, 102: 142302

    Article  ADS  Google Scholar 

  51. Liang H, Van Giai N, Meng J. Isospin corrections for superallowed Fermi β decay in self-consistent relativistic random-phase approximation approaches. Phys Rev C, 2009, 79: 064316

    Article  ADS  Google Scholar 

  52. Liang H, Van Giai N, Meng J. Spin-isospin resonances: A self-consistent covariant description. Phys Rev Lett, 2008, 101: 122502

    Article  ADS  Google Scholar 

  53. Amsler C, et al. (Particle Data Group) Review of particle physics. Phys Lett B, 2008, 667: 1–6

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, J., Niu, Z., Liang, H. et al. Selected issues at the interface between nuclear physics and astrophysics as well as the standard model. Sci. China Phys. Mech. Astron. 54 (Suppl 1), 119–123 (2011). https://doi.org/10.1007/s11433-011-4439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4439-1

Keywords

Navigation