Skip to main content
Log in

Single-particle resonances in a deformed relativistic potential

  • Brief Report
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The positive-parity single-neutron levels in an axially-deformed relativistic quadrupole Woods-Saxon potential are analyzed. Neutron states are obtained as the solutions of the corresponding single-particle Dirac equation, using the coupled-channels method in the coordinate space. The evolution of the levels close to the continuum threshold and, in particular, the occurrence of single-neutron resonant states as the functions of the axial deformation parameter 0 ⩽ β ⩽ 0.5, are examined using the eigenphase representation. Calculations are performed for different values of the radius of the potential (R/r 0)3, corresponding to a variation of the mass number A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ring P, Schuck P. The Nuclear Many-body Problem. Berlin: Springer-Verlag, Inc, 1980

    Google Scholar 

  2. Bulgac A. Hartree-Fock-Bogoliubov Approximation for Finite Systems. arXiv, 9907.088v2 [nucl-th]

  3. Dobaczewski J, Nazarewicz W, Treiner J. Hartree-Fock-Bogoliubov description of nuclei near the neutron-drip line. Nucl Phys A, 1984, 422: 103–139

    Article  ADS  Google Scholar 

  4. Ring P. Relativistic mean field theory in finite nuclei. Prog Part Nucl Phys, 1996, 37: 193–263

    Article  ADS  Google Scholar 

  5. Meng J, Ring P. Relativistic Hartree-Bogoliubov description of the neutron halo in 11Li. Phys Rev Lett, 1996, 77: 3963–3966

    Article  ADS  Google Scholar 

  6. Meng J. Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny force and their application. Nucl Phys A, 1998, 635: 3–42

    Article  ADS  Google Scholar 

  7. Sandulescu N, Geng L S, Toki H, et al. Pairing correlations and resonant states in the relativistic mean field theory. Phys Rev C, 2003, 68: 054323

    Article  ADS  Google Scholar 

  8. Vretenar D, Afanasjev A V, Lalazissis G A, et al. Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure. Phys Rep, 2005, 40: 101–259

    Article  ADS  Google Scholar 

  9. Meng J, Toki H, Zhou S G, et al. Relativisitc continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog Part Nucl Phys, 2006, 57: 470–563

    Article  ADS  Google Scholar 

  10. Xu H S, Tu X L, Yuan Y J, et al. First mass measurement of short-lived nuclides at HIRFL-CSR. Chinese Sci Bull, 2009, 54: 4749–4752

    Article  Google Scholar 

  11. Sun Y. Nuclear masses near the proton drip-line and their impact on nucleosynthesis in explosive stars. Chinese Sci Bull, 2009, 54: 4594–4595

    Article  Google Scholar 

  12. Wigner E, Eisenbud L. Higher angular momenta and long range interaction in resonance reactions. Phys Rev, 1947, 72: 29–41

    Article  ADS  Google Scholar 

  13. Humblet J, Filippone B W, Koonin S E. Level matrix, 16N β decay, and the 12C(α, γ)16O reaction. Phys Rev C, 1991, 44: 2530–2535

    Article  ADS  Google Scholar 

  14. Taylor J R. Scattering Theory: The Quantum Theory on Nonrelativistic Collisions. New York: Wiley, Inc, 1972

    Google Scholar 

  15. Hazi A U, Taylor H S. Stabilization method of calculating resonance energies: Model problem. Phys Rev A, 1970, 1: 1109–1120

    Article  ADS  Google Scholar 

  16. Zhang L, Zhou S G, Meng J, et al. Real stabilization method for nuclear single-particle resonances. Phys Rev C, 2008, 77: 014312

    Article  ADS  Google Scholar 

  17. Zhou S G, Meng J, Zhao E G. A spherical-box approach for resonances in the presence of the Coulomb interaction. J Phys B, 2009, 42: 245001

    Article  ADS  Google Scholar 

  18. Ho Y K. The method of complex coordinate rotation and its applications to atomic collision processes. Phys Rep, 1983, 99: 1–68

    Article  ADS  Google Scholar 

  19. Kukulin V I, Krasnopl’sky V M, Horácek J. Theory of resonances: Principles and applications. Dordrecht: Kluwer Academic, Inc, 1989

    MATH  Google Scholar 

  20. Zhang S S, Meng J, Zhou S G, et al. Analytic continuation of single-particle resonance energy and wave function in relativistic mean field theory. Phys Rev C, 2004, 70: 034308

    Article  ADS  Google Scholar 

  21. Yao J M, Chen H, Meng J. Time-odd triaxial relativistic mean field approach for nuclear magnetic moments. Phys Rev C, 2006, 74: 024307

    Article  ADS  Google Scholar 

  22. Zhang Y, Sagawa H, Yoshino D, et al. Shape evolution of C isotopes in (β, γ) deformation plane. Prog Theor Phys, 2008, 120: 129–142

    Article  ADS  Google Scholar 

  23. Li J, Yao J M, Meng J. Deformation constrained relativistic mean-field approach with fixed configuration and time-odd component. Chin Phys C, 2009, 33(S1): 98–100

    Article  ADS  Google Scholar 

  24. Wang N, Guo L. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory. Sci China Ser G-Phys Mech Astron, 2009, 52: 1574–1578

    Article  ADS  Google Scholar 

  25. Liu Y X, Yu S Y, Shen C W, et al. Theory study of shapes in 187,189Tl nuclei. Sci China Ser G-Phys Mech Astron, 2009, 52: 818–821

    Article  ADS  Google Scholar 

  26. Sun Y, Zhang J Y, Long G L, et al. Coexistence of normal, super-, and hyper-deformation in nuclei: A study with angular momentum projection method. Chinese Sci Bull, 2009, 54: 358–363

    Article  Google Scholar 

  27. Zhou S G, Meng J, Ring P, et al. Neutron halo in deformed nuclei. arXiv, 0909.1600v2 [nucl-th]

  28. Ferreira L S, Maglione E, Liotta R J. Nucleon resonances in deformed nuclei. Phys Rev Lett, 1997, 78: 1640–1643

    Article  ADS  Google Scholar 

  29. Yoshida K, Hagino K. Role of low-l component in deformed wave functions near the continuum threshold. Phys Rev C, 2005, 72: 064311

    Article  ADS  Google Scholar 

  30. Cattapan G, Maglione E. From bound states to resonances: Analytic continuation of the wave function. Phys Rev C, 2000, 61: 067301

    Article  ADS  Google Scholar 

  31. Hagino K, Van Giai N. Structure of positive energy states in a deformed mean-field potential. Nucl Phys A, 2004, 735: 55–76

    Article  ADS  Google Scholar 

  32. Hamamoto I. One-particle resonant levels in a deformed potential. Phys Rev C, 2005, 72: 024301

    Article  ADS  Google Scholar 

  33. Hamamoto I. Positive-energy one-particle levels in quadrupole-deformed Woods-Saxon potentials. Phys Rev C, 2006, 73: 064308

    Article  ADS  Google Scholar 

  34. Hagen G, Vaagen J S. Study of resonant structures in a deformed mean field by the contour deformation method in momentum space. Phys Rev C, 2006, 73: 034321

    Article  ADS  Google Scholar 

  35. Walecka J D. Theory of highly condensed matter. Ann Phys (NY), 1974, 83: 491–529

    Article  ADS  Google Scholar 

  36. Serot B D, Walecka J D. The relativistic nuclear many-body problem. Adv Nucl Phys, 1986, 16: 1–320

    Google Scholar 

  37. Reinhard P G. The relativistic mean-field description of nuclei and nuclear-dynamics. Rep Prog Phys, 1989, 52: 439–514

    Article  ADS  Google Scholar 

  38. Pöchl W, Vretenar D, Lalazissis G A, et al. Relativistic Hartree-bogoliubov theory with finite range pairing forces in coordinate space: Neutron halo in light nuclei. Phys Rev Lett, 1997, 79: 3841–3844

    Article  ADS  Google Scholar 

  39. Zhou S G, Meng J, Ring P. Deformed Relativistic Hartree-Bogoliubov Model for Exotic Nuclei. In: Physics of Unstable Nuclei: Proceedings of The International Symposium on Physics of Unstable Nuclei 2007. Singapore: World Scientific, 2008, 402–408

    Chapter  Google Scholar 

  40. Vretenar D, Lalazissis G A, Ring P. Relativistic Hartree-Bogoliubov description of the deformed ground-state proton emitters. Phys Rev Lett, 1999, 82: 4595–4598

    Article  ADS  Google Scholar 

  41. Li J, Zhang Y, Yao J M, et al. Magnetic moments of 33Mg in the time-odd relativistic mean field approach. Sci China Ser G-Phys Mech Astron, 2009, 52: 1586–1592

    Article  MathSciNet  ADS  Google Scholar 

  42. Geng L S, Meng J, Toki H. Reflection asymmetric relativistic mean field approach and its application to the octupole deformed nucleus Ra-226. Chin Phys Lett, 2007, 24: 1865–1868

    Article  ADS  Google Scholar 

  43. Zhang Y, Liang H Z, Meng J. Solving the Dirac equation with nonlocal potential by imaginary time step method. Chin Phys Lett, 2009, 26: 092401

    Article  ADS  Google Scholar 

  44. Li F Q, Zhang Y, Meng J. Convergence for Imaginary Time Step evolution in the Fermi and Dirac seas. Sci China-Phys Mech Astron, 2010, 53: 327–330

    ADS  Google Scholar 

  45. Li Z P, Meng J, Zhang Y, et al. Single-particle resonances in deformed dirac equation. Submitted to Phys Rev C

  46. Fortune H T. Definitions of a single-particle resonance. Phys Rev C, 2006, 73: 014318

    Article  ADS  Google Scholar 

  47. Hamamoto I. Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons. Phys Rev C, 2007, 76: 054319

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Meng.

Additional information

Recommended by LONG GuiLu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Zhang, Y., Vretenar, D. et al. Single-particle resonances in a deformed relativistic potential. Sci. China Phys. Mech. Astron. 53, 773–778 (2010). https://doi.org/10.1007/s11433-010-0161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0161-7

Keywords

Navigation