Skip to main content
Log in

The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis

  • Research Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

To gain a better understanding of the regulatory mechanism of plant metallothionein (MT) genes, a chimeric expression unit consisting of the β-glucuronidase (gusA) reporter gene under the control of a 1,324 bp fragment of the rice MT (ricMT) promoter was introduced into Arabidopsis via Agrobacterium tumefaciens. The strongest histochemical staining for GUS activity was observed in the cotyledons and hypocotyls of the transgenic seedlings and in the stigma, filaments and anthers of young and mature flowers, and especially in the wounded tissues of transgenic plants. In contrast, a relatively low level of reporter gene expression was seen in the young roots of transgenic seedlings and no GUS activity was detected in the stems, seeds and leaves, but GUS activity was observed in cotyledons and the first two true leaves. Promoter analysis of 5′ deletions further identified several important regions responsible for organ-specific expression including roots, flowers and wound induction, light and ABA, Cu and Zn responses. These findings demonstrate that a 1,324 bp fragment of the rice MT promoter performs a complicated transcriptional regulation with clearly functional regions in a model plant, and provide an important insight into the transcriptional regulation mechanisms that operate the temporal- and spatial-specific expression and stress responses of the rice MT gene. These results suggest that the ricMT promoter and its functional regions are potentially useful in genetic engineering of plants to express the desired genes whose products are preferentially needed in roots, flowers and wound induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323:72–78

    Article  PubMed  CAS  Google Scholar 

  • Arguello-Astorga GR, Herrera-Estrella LR (1996) Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol 112:1151–1166

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Binz P-A, Kägi JHR (1999) Metallothionein: Molecular evolution, classification. In: Klaassen C (ed) Metallothionein IV. Birkhäuser Verlag Basel, pp 7–13

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Butt A, Mousley C, Morris K, Beynon J, Can C, Holub E et al (1998) Differential expression of senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. Plant J 16:209–221

    Article  PubMed  CAS  Google Scholar 

  • Charbonnel-Campaa L, Lauga B, Combes D (2000) Isolation of a type 2 metallothionein-like gene preferentially expressed in the tapetum in Zea mays. Gene 254:199–208

    Article  PubMed  CAS  Google Scholar 

  • Chatthai M, Osusky M, Osuska L, Yevtushenko D, Misra S (2004) Functional analysis of a Douglas-fir metallothionein-like gene promoter: transient assays in zygotic and somatic embryos and stable transformation in transgenic tobacco. Planta 220:118–128

    Article  PubMed  CAS  Google Scholar 

  • Choi D, Kim HM, Yun HK, Park JA, Kim WT, Bok SH (1996) Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiol 112:353–359

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Coupe SA, Taylor JE, Roberts JA (1995) Characterisation of an mRNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission of Sambucus nigra L. leaflets. Planta 197:442–447

    Article  PubMed  CAS  Google Scholar 

  • Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  PubMed  CAS  Google Scholar 

  • Evans IM, Gatehouse LN, Gatehouse JA, Robinson NJ, Croy RR (1990) A gene from pea (Pisum sativum L.) with homology to metallothionein genes. FEBS Lett 262:29–32

    Article  PubMed  CAS  Google Scholar 

  • Foley RC, Singh KB (1994) Isolation of a Vicia faba metallothionein-like gene: expression in foliar trichomes. Plant Mol Biol 26:435–444

    Article  PubMed  CAS  Google Scholar 

  • Fordham-Skelton AP, Lilley C, Urwin PE, Robinson NJ (1997) GUS expression in Arabidopsis directed by 5′-regions of the pea metallothionein-like gene PsMTA. Plant Mol Biol 34:659–668

    Article  PubMed  CAS  Google Scholar 

  • Fukuzawa H, Yu LH, Umeda-Hara C, Tagawa M, Uchimiya H (2004) The rice metallothionein gene promoter does not direct foreign gene expression in seed endosperm. Plant Cell Report 23:231–235

    Article  CAS  Google Scholar 

  • Garcia-Hernandez M, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol 118:387–397

    Article  PubMed  CAS  Google Scholar 

  • Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381

    Article  CAS  Google Scholar 

  • Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533:211–226

    PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hobo T, Asada M, Kowyama Y, Hattori T (1999) Acgt-containing abscisic acid response element (abre) and coupling element 3 (ce3) are functionally equivalent. Plant J 19:679–689

    Article  PubMed  CAS  Google Scholar 

  • Hsieh HM, Huang PC (1998) Promoter structure and activity of type 1 rice metallothionein-like gene. DNA Seq 9:9–17

    PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: bglucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kägi J (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Article  PubMed  Google Scholar 

  • Kawashima I, Kennedy TD, Chino M, Lane BG (1992) Wheat Ec metallothionein genes: like mammalian Zn2+ metallothionein genes are conspicuously expressed during embryogenesis. Eur J Biochem 209:971–976

    Article  PubMed  CAS  Google Scholar 

  • Kawashima I, Inokuchi Y, Chino M, Kimura M, Shimizu N (1991) Isolation of a gene for a metallothionien-like protein from soybean. Plant Cell Physiol 32:913–916

    CAS  Google Scholar 

  • Lane B, Kajioka R, Kennedy T (1987) The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem Cell Biol 65:1001–1005

    Article  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Ledger SE, Gardner RC (1994) Cloning and characterization of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa). Plant Mol Biol 25:877–886

    Article  PubMed  CAS  Google Scholar 

  • Liu JY, Hara C, Umeda M, Zhao Y, Okita TW, Uchimiya H (1995) Analysis of randomly isolated cDNAs from developing endosperm of rice (Oryza sativa L.): evaluation of expressed sequence tags, and expression levels of mRNAs. Plant Mol Biol 29:685–689

    Article  PubMed  CAS  Google Scholar 

  • Liu JY, Lu T, Zhao NM (2000) Classification and nomenclature of plant metallothionein-like proteins based on their cysteine arrangement patterns. Acta Bot Sinica 42:649–652

    CAS  Google Scholar 

  • Menkens AE, Schindler U, Cashmore AR (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GFB family of bZIP proteins. Trends Biochem Sci 20:506–510

    Article  PubMed  CAS  Google Scholar 

  • Murphy A, Zhou J, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol 113:1293–1301

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi T, Hamada T, Kodama H, Iba K (1997) Wounding changes the spatial expression pattern of the Arabidopsis plastid ω-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. Plant Cell 9:1701–1712

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves. J Biol Chem 279:55355–55361

    Article  PubMed  CAS  Google Scholar 

  • Pastuglia M, Roby D, Dumas C, Cock JM (1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 9:49–60

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19-48

    Article  PubMed  CAS  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    PubMed  CAS  Google Scholar 

  • Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Kondoh M (2002) Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med 196:9–22

    Article  PubMed  CAS  Google Scholar 

  • Snowden KC, Richards KD, Gardner RC (1995) Aluminum-induced genes (induction by toxic metals, low calcium, and wounding and pattern of expression in root tips). Plant Physiol 107:341–348

    PubMed  CAS  Google Scholar 

  • Stalberg K, Ellenstom M, Ezcurra I, Abolov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high RT transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519

    Article  PubMed  CAS  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  • Vasak M, Hasler D (2000) Metallothioneins: new functional and structural insight. Curr Opin Chem Biol 4:177–183

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons R, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Nat Acad Sci USA 94:7685–7690

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw CA, Le Huquet JA, Thurman DA, Tomsett AB (1997) The isolation and characterization of type II metallothioneinlike genes from tomato (Lycopersicon esculentum L.). Plant Mol Biol 33:503–511

    Article  PubMed  CAS  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of Metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Yu LH, Umeda M, Liu JY, Zhao NM, Uchimiya H (1998) A novel MT gene of rice plants is strongly expressed in the node portion of the stem. Gene 206:29–35

    Article  PubMed  CAS  Google Scholar 

  • Yu LH, Liu JY, Zhao NM, Umeda M, Uchimiya H (2000) Cloning and sequence characteristics of the genomic gene of a rice metallothionein. Chin Sci Bull 45:153–156

    CAS  Google Scholar 

  • Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884

    Article  PubMed  CAS  Google Scholar 

  • Zhou GK, Xu YF, Liu JY (2005) Characterization of a rice class II metallothionein gene: tissue expression patterns and induction in response to abiotic factors. J Plant Physiol 162:686–696

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Laboratory of Molecular Biology at Tsinghua University for comments and participation in discussions. This work was supported by grants from the National Natural Science Foundation of China (30270753, 30370804), the State Key Basic Research and Development Plan of China (2004CB117303), and the Hi-Tech Research and Development Program of China (2004AA222100, 2002AA212051 and 2002AA207006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yuan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, S., Gu, H., Yuan, X. et al. The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis . Transgenic Res 16, 177–191 (2007). https://doi.org/10.1007/s11248-006-9035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9035-1

Keywords

Navigation