Skip to main content
Log in

What is a Suitable Dissolution Method for Drug Nanoparticles?

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Many existing and new drugs fail to be fully utilized because of their limited bioavailability due to poor solubility in aqueous media. Given the emerging importance of using nanoparticles as a promising way to enhance the dissolution rate of these drugs, a method must be developed to adequately reflect the rate-change due to size reduction. At present, there is little published work examining the suitability of different dissolution apparatus for nanoparticles.

Methods

Four commonly-used methods (the paddle, rotating basket and flow-through cell from the US Pharmacopia, and a dialysis method) were employed to measure the dissolution rates of cefuroxime axetil as a model for nanodrug particles.

Results

Experimental rate ratios between the nanoparticles and their unprocessed form were 6.95, 1.57 and 1.00 for the flow-through, basket and paddle apparatus respectively. In comparison, the model-predicted value was 7.97. Dissolution via dialysis was rate-limited by the membrane.

Conclusions

The data showed the flow-through cell to be unequivocally the most robust dissolution method for the nanoparticulate system. Furthermore, the dissolution profiles conform closely to the classic Noyes–Whitney model, indicating that the increase in dissolution rate as particles become smaller results from the increase in surface area and solubility of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. A. Dokoumetzidis, and P. Macheras. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int. J. Pharm. 321:1–11 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. B. R. Rohrs. Dissolution method development for poorly soluble compounds. Dissolution Technologies. 8:1–5 (2001).

    Google Scholar 

  3. G. H. Zhang, W. A. Vadino, T. T. Yang, W. P. Cho, and I. A. Chaudry. Evaluation of the flow-through cell dissolution apparatus: effects of flow rate, glass beads and tablet position on drug release from different types of tablets. Drug Dev. Ind. Pharm. 20:2063–2078 (1994).

    Article  CAS  Google Scholar 

  4. A. A. Noyes, and W. R. Whitney. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19:930–934 (1897).

    Article  Google Scholar 

  5. M. Gibaldi, S. Feldman, R. Wynn, and N. D. Weiner. Dissolution rates in surfactant solutions under stirred and static conditions. J. Pharm. Sci. 57:787–791 (1968).

    Article  PubMed  CAS  Google Scholar 

  6. W. I. Higuchi. Diffusional models useful in biopharmaceutics. J. Pharm. Sci. 56:315–324 (1967).

    Article  CAS  Google Scholar 

  7. P. Veng Pedersen, and K. F. Brown. Experimental evaluation of three single-particle dissolution models. J. Pharm. Sci. 65:1442–1447 (1976).

    Article  Google Scholar 

  8. B. Y. Shekunov, P. Chattopadhyay, J. Seitzinger, and R. Huff. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm. Res. 23:196–204 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. M. H. El-Shabouri. Nanoparticles for improving the dissolution and oral bioavailability of spironolactone, a poorly-soluble drug. STP Pharma Sciences. 12:97–101 (2002).

    CAS  Google Scholar 

  10. E. Reverchon, and R. Adami. Nanomaterials and supercritical fluids. J. Supercrit. Fluids. 37:1–22 (2006).

    Article  CAS  Google Scholar 

  11. H. Eerikainen, W. Watanabe, E. I. Kauppinen, and P. P. Ahonen. Aerosol flow reactor method for synthesis of drug nanoparticles. Eur. J. Pharm. Biopharm. 55:357–360 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. J. F. Chen, J. Y. Zhang, Z. G. Shen, J. Zhong, and J. Yun. Preparation and characterisation of amorphous cefuroxime axetil drug nanoparticles with novel technology: high-gravity antisolvent precipitation. Ind. Eng. Chem. Res. 45:8723–8727 (2006).

    Article  CAS  Google Scholar 

  13. M. A. Lopez-Quintela. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 8:137–144 (2003).

    Article  CAS  Google Scholar 

  14. B. K. Johnson, and R. K. Prud’homme. Chemical processing and micromixing in confined impinging jets. Alchem. J. 49:2264–2282 (2003).

    CAS  Google Scholar 

  15. R. H. Muller and J. A. H. Junghanns. Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. In V. P. Torchilin (ed.), Nanoparticulates as Drug Carriers, Imperial College Press, London, 2006, pp. 308–309.

    Google Scholar 

  16. R. B. Gupta. Fundamentals of drug nanoparticles. In R. B. Gupta, and U. B. Kompella (eds.), Drugs and the Pharmaceutical Sciences: Nanoparticle Technology for Drug Delivery, Taylor and Francis, New York, 2006, pp. 6–9.

    Google Scholar 

  17. L. M. Katz. Nanotechnology and applications in cosmetics: general overview. American Chemical Society Symposium Series (2007). 961:193–200 (2007).

    CAS  Google Scholar 

  18. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25 (1997).

    Article  CAS  Google Scholar 

  19. I. Kanfer. Report on the international workshop on the biopharmaceutics classification system (BCS): scientific and regulatory aspects in practice. J. Pharm. Pharm. Sci. 5:1–4 (2002).

    PubMed  CAS  Google Scholar 

  20. N. Rasenack, H. Hartenhauer, and B. W. Muller. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int. J. Pharm. 254:137–145 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. P. Finholt. Influence of formulation on dissolution rate. In L. J. Leeson, and J. T. Carstensen (eds.), Dissolution Technology, The Industrial Pharmaceutical Technology Section of the Academy of Pharmaceutical Science, Washington, 1974, pp. 106–146.

    Google Scholar 

  22. E. Leo, R. Cameroni, and F. Forni. Dynamic dialysis for the drug release evaluation from doxorubicin–gelatin nanoparticle conjugates. Int. J. Pharm. 180:23–30 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. M. Nicklasson, A. Orbe, J. Lindberg, B. Borga, A. B. Magnusson, G. Nilsson, R. Ahlgren, and L. Jacobsen. A collaborative study of the in vitro dissolution of phenacetin crystals comparing the flow through method with the USP paddle method. Int. J. Pharm. 69:255–264 (1991).

    Article  CAS  Google Scholar 

  24. B. Wennergren, J. Lindberg, M. Nicklasson, G. Nilsson, G. Nyberg, R. Ahlgren, C. Persson, and B. Palm. A collaborative in vitro dissolution study: comparing the flow-through method with the USP paddle method using USP prednisone calibrator tablets. Int. J. Pharm. 53:35–41 (1989).

    Article  CAS  Google Scholar 

  25. K. Gjellan, A. B. Magnusson, R. Ahlgren, K. Callmer, D. F. Christensen, U. Espmarker, L. Jacobsen, K. Jarring, G. Lundin, G. Nilsson, and J. O. Waltersson. A collaborative study of the in vitro dissolution of acetylsalicylic acid gastro-resistant capsules comparing the flow-through cell method with the USP paddle method. Int. J. Pharm. 151:81–90 (1997).

    Article  CAS  Google Scholar 

  26. H. Moller. Dissolution testing of different dosage forms using the flow-through method. Pharm. Ind. 45:617–622 (1983).

    Google Scholar 

  27. H. Moller, and E. Wirbitzki. Special cases of dissolution testing using the flow-through system. STP Pharma Sciences. 6:657–662 (1990).

    Google Scholar 

  28. F. Langenbucher, D. Benz, W. Kurth, H. Moller, and M. Otz. Standardized flow-cell method as an alternative to existing pharmacopoeial dissolution testing. Pharm. Ind. 51:1276–1281 (1989).

    CAS  Google Scholar 

  29. A. D. Karande, and P. G. Yeole. Comparative assessment of different dissolution apparatus for floating drug delivery systems. Dissolution Technologies. 13:20–23 (2006).

    CAS  Google Scholar 

  30. M. C. Gohel, P. R. Mehta, R. K. Dave, and N. H. Bariya. A more relevant dissolution method for evaluation of floating drug delivery system. Dissolution Technologies. 11:22–25 (2004).

    CAS  Google Scholar 

  31. P. P. Sanghvi, J. S. Nambiar, A. J. Shukla, and C. C. Collins. Comparison of three dissolution devices for evaluating drug release. Drug Dev. Ind. Pharm. 20:961–980 (1994).

    Article  CAS  Google Scholar 

  32. J. Hu, A. Kyad, V. Ku, P. Zhou, and N. Cauchon. A comparison of dissolution testing on lipid soft gelatin capsules using USP apparatus 2 and apparatus 4. Dissolution Technologies. 12:6–9 (2005).

    CAS  Google Scholar 

  33. E. Beyssac, and J. Lavigne. Dissolution study of active pharmaceutical ingredients using the flow through apparatus USP 4. Dissolution Technologies. 12:23–25 (2005).

    CAS  Google Scholar 

  34. S. N. Bhattachar, J. A. Wesley, A. Fioritto, P. J. Martin, and S. R. Babu. Dissolution testing of a poorly soluble compound using the flow-through cell dissolution apparatus. Int. J. Pharm. 236:135–143 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. B. A. Hendriksen. Characterization of calcium fenoprofen. 1. Powder dissolution rate and degree of crystallinity. Int. J. Pharm. 60:243–252 (1990).

    Article  CAS  Google Scholar 

  36. J. Hecq, M. Deleers, D. Fanara, H. Vranckx, and K. Amighi. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm. 299:167–177 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. J. L. Baxter, J. Kukura, and F. J. Muzzio. Shear-induced variability in the United States pharmacopoeia apparatus 2: modifications to the existing system. AAPS J. 7:E857–E864 (2006).

    Article  PubMed  Google Scholar 

  38. D. H. Adams, M. J. Wood, and I. D. Farrell. Oral cefuroxime axetil: clinical pharmacology and comparative dose studies in urinary tract infection. J. Antimicrob. Chemother. 16:359–366 (1985).

    Article  PubMed  CAS  Google Scholar 

  39. Micromeritics. Instruction manual (Multivolume Pycnometer 1305) for determining skeletal density and volume of powders, porous materials, and irregularly shaped solid objects, Micromeritics Instrument Corporation, USA, 1992.

  40. D. Horn, and J. Rieger. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew. Chem. Int. Ed. 40:4330–4361 (2001).

    Article  CAS  Google Scholar 

  41. A. Tandya, F. Dehghani, and N. R. Foster. Micronisation of cyclosporine using dense gas techniques. J. Supercrit. Fluids. 37:272–278 (2006).

    Article  CAS  Google Scholar 

  42. P. J. Missel, L. E. Stevens, and J. W. Mauger. Reexamination of convective diffusion/drug dissolution in a laminar flow channel: accurate prediction of dissolution rate. Pharm. Res. 21:2300–2306 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. M. Nicklasson, B. Wennergren, J. Lindberg, C. Persson, R. Ahlgren, B. Palm, A. Pettersson, and L. Wenngren. A collaborative in vitro dissolution study using the flow-through method. Int. J. Pharm. 37:195–202 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Lee Ford-Griffiths (Particle & Surface Sciences Pty. Ltd.) for the BET analysis and staff of the Electron Microscope Unit (The University of Sydney) for kind usage of the field emission scanning electron microscope and the X-ray powder diffractometer. This work was supported by a grant from the Australian Research Council (ARC Linkage Project LP 0561675 with Nanomaterials Technology Pty. Ltd). One of the authors (JAR) is currently at the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Kim Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heng, D., Cutler, D.J., Chan, HK. et al. What is a Suitable Dissolution Method for Drug Nanoparticles?. Pharm Res 25, 1696–1701 (2008). https://doi.org/10.1007/s11095-008-9560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9560-0

Key words

Navigation