Skip to main content

The Role of Particle Size in Drug Release and Absorption

  • Chapter
  • First Online:
Particulate Products

Part of the book series: Particle Technology Series ((POTS,volume 19))

Abstract

Solid drug delivery systems are crucial formulations via the oral route. In such drug systems, particle size has a strong impact on drug dissolution and on drug absorption. Its role in dissolution rate is described starting from the Noyes–Whitney equation, the modified form by Nerst–Brunner and the cube root equation. According to these equations diffusion of solute through a boundary layer around the particles is the rate limiting step in both drug dissolution and absorption and, thus, depends upon the specific (external) surface area of the particles, the diffusion coefficient of the solute, the thickness of the boundary layer and the solute solubility. In relation to this, good wetting of the particle surface by the surrounding liquid and adequate particle dispersion play an essential role. Information from dissolution rates suggests that the thickness of the boundary layer is constant for larger particle sizes but dependent upon size for smaller particles. Given the larger surface area of smaller particles, the attention is directed to nanosystems and on their relevance to the bioavailability of poorly soluble drugs. A second advantage of such drug systems is that the solubility increases with decreasing particle size, according to the Freundlich–Ostwald equation. Since dissolution and absorption are closely related, the impact of particle size on drug absorption is described. Moreover, regulatory implications of particle size are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdou, H.M.: Dissolution, Bioavailability and Bioequivalence. Mack, Easton (1989)

    Google Scholar 

  2. Amidon, G.L., Lennernas, H., Shah, V.P., Crison, J.R.: A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420 (1995)

    Article  Google Scholar 

  3. Anderberg, E.K., Nyström, C., Bisrat, M.: Physico-chemical aspects of drug release. VII. The effect of surfactant concentration and drug particle size on solubility and dissolution rate of Felodipine, a sparingly soluble drug. Int. J. Pharm. 47, 67–77 (1988)

    Article  Google Scholar 

  4. Atkinson, R.M., Bedford, C., Child, K.J., Tomich, E.G.: Effect of particle size on blood griseofulvin levels in man. Nature 193, 588–589 (1962)

    Article  ADS  Google Scholar 

  5. Bisrat, M., Nyström, C.: Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int. J. Pharm. 47, 223–231 (1988)

    Article  Google Scholar 

  6. Brunner, E.: Reaktionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem. 43, 56–102 (1904)

    Google Scholar 

  7. Caramella, C.: Utilizzazione dei parametri granulometrici nella progettazione di forme farmaceutiche. Boll. Chim. Farm. 130, 43–51 (1991)

    Google Scholar 

  8. Carstensen, J.T.: Solid Pharmaceutics: Mechanical Properties and Rate Phenomena. Academic, New York (1980)

    Google Scholar 

  9. Dressman, J.B., Reppas, C.: In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. 11, 73–80 (2000)

    Article  Google Scholar 

  10. Fu, Q., Kou, L., Gong, C., Li, M., Sun, J., Zhang, D., Liu, M., Sui, X., Liu, K., Wang, S., He, Z.: Relationship between dissolution and bioavailability for nimodipine colloidal dispersions: The critical size in improving bioavailability. Int. J. Pharm. 427, 358–364 (2012)

    Article  Google Scholar 

  11. Gao, L., Liu, G., Ma, J., Wang, X., Zhou, L., Li, X.: Drug nanocrystals: In vivo performances. J. Control Release 160, 418–430 (2012)

    Article  Google Scholar 

  12. Gibaldi, M.: Biopharmaceutics and Clinical Pharmacokinetics, 3rd edn, pp. 44–63. Lea and Febiger, Philadelphia (1984)

    Google Scholar 

  13. Hanafy, A., Spahn-Langguth, H., Vergnault, G., Grenier, P., Tubic Grozdanis, M., Lenhardt, T., Langguth, P.: Pharmacokinetic evaluation of oral feno!brate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv. Drug Deliv. Rev. 59, 419–426 (2007)

    Article  Google Scholar 

  14. Higuchi, T.: Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52, 1145–1149 (1963)

    Article  Google Scholar 

  15. Hintz, R.J., Johnson, K.C.: The effect of particle-size distribution on dissolution rate and oral absorption. Int. J. Pharm. 51, 9–17 (1989)

    Article  Google Scholar 

  16. Hixson, A.W., Crowell, J.H.: Dependence of reaction velocity upon surface and agitation. Ind. Eng. Chem. 23, 923–931 (1931)

    Article  Google Scholar 

  17. ICH Guideline Q6A.: Specifications: Test procedures and acceptance criteria for new drug substances and new drug products: Chemical substances; ICH (1999)

    Google Scholar 

  18. Jinno, J., Kamada, N., Miyake, M., Yamada, K., Mukai, T., Odomi, M., Toguchi, H., Liversidge, G.G., Higaki, K., Kimura, T.: Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control Release 111, 56–64 (2006)

    Article  Google Scholar 

  19. Johnson, K.C.: Dissolution and absorption modeling: Model expansion to simulate the effects of precipitation, water absorption, longitudinally changing intestinal permeability, and controlled release on drug absorption. Drug Dev. Ind. Pharm. 29, 833–842 (2003)

    Article  Google Scholar 

  20. Jounela, A.J., Pentikainen, P.J., Sothmann, A.: Effect of particle size on the bioavailability of digoxin. Eur. J. Clin. Pharmacol. 8, 365–370 (1975)

    Article  Google Scholar 

  21. Junemann, D., Dressman, J.B.: Analytical methods for dissolution testing of nanosized drugs. J. Pharm. Pharmacol. 64, 931–943 (2012)

    Article  Google Scholar 

  22. Kaneniwa, N., Watari, N.: Dissolution of slightly soluble drugs. I. Influence of particle size on dissolution behavior. Chem. Pharm. Bull. 22, 1699–1705 (1974)

    Article  Google Scholar 

  23. Kaneniwa, N., Watari, N., Iijima, H.: Dissolution of slightly soluble drugs. V. Effect of particle size on gastrointestinal drug absorption and its relation to solubility. Chem. Pharm. Bull. 26, 2603–2614 (1978)

    Article  Google Scholar 

  24. Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., Onoue, S.: Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm. 420, 1–10 (2011)

    Article  Google Scholar 

  25. Keck, C.M., Muller, R.H.: Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur. J. Pharm. Biopharm. 62, 3–16 (2006)

    Article  Google Scholar 

  26. Kesisoglou, F., Panmai, S., Wu, Y.: Nanosizing – Oral formulation development and biopharmaceutical evaluation. Adv. Drug Deliv. Rev. 59, 631–644 (2007)

    Article  Google Scholar 

  27. Li, X., Gu, L., Xu, Y., Wang, Y.: Preparation of fenofibrate nanosuspension and study of its pharmacokinetic behavior in rats. Drug Dev. Ind. Pharm. 35, 827–833 (2009)

    Article  Google Scholar 

  28. Lipinski, C.: Poor aqueous solubility — An industry wide problem in drug discovery. Am. Pharm. Rev. 5, 82–85 (2002)

    Google Scholar 

  29. Liversidge, G.G., Conzentino, P.: Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int. J. Pharm. 125, 309–313 (1995)

    Article  Google Scholar 

  30. Liversidge, G.G., Cundy, K.C.: Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystal- line danazol in beagle dogs. Int. J. Pharm. 125, 91–97 (1995)

    Article  Google Scholar 

  31. Merisko-Liversidge, E., Liversidge, G.G., Cooper, E.R.: Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 18, 113–120 (2003)

    Article  Google Scholar 

  32. Mosharraf, M., Nystrom, C.: The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int. J. Pharm. 122, 35–47 (1995)

    Article  Google Scholar 

  33. Mou, D., Chen, H., Wan, J., Xu, H., Yang, X.: Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int. J. Pharm. 413, 237–244 (2011)

    Article  Google Scholar 

  34. Muller, R.H., Jacobs, C., Kayser, O.: Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 47, 3–19 (2001)

    Article  Google Scholar 

  35. Muller, R.H., Peters, K.: Nanosuspensions for the formulation of poorly soluble drugs I. Preparation by a size-reduction technique. Int. J. Pharm. 160, 229–237 (1998)

    Article  Google Scholar 

  36. Nernst, W.: Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem. 47, 52–55 (1904)

    Google Scholar 

  37. Neuvonen, P.J.: Bioavailability of phenytoin: Clinical pharmacokinetic and therapeutic implications. Clin. Pharmacokinet. 4, 91–103 (1979)

    Article  Google Scholar 

  38. Niebergall, P.J., Milosovich, G., Goyan, J.: E. Dissolution rate studies. 2. Dissolution of particles under conditions of rapid agitation. J. Pharm. Sci. 52, 236–241 (1963)

    Article  Google Scholar 

  39. Ning, X., Sun, J., Han, X., Wu, Y., Yan, Z., Han, J., He, Z.: Strategies to improve dissolution and oral absorption of glimepiride tablets: Solid dispersion versus micronization techniques. Drug Dev. Ind. Pharm. 37, 727–736 (2011)

    Article  Google Scholar 

  40. Noyes, A.A., Whitney, W.R.: The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19, 930–934 (1897)

    Article  Google Scholar 

  41. Nyström, C., Mazur, J., Barnett, M.I., Glazer, M.: Dissolution rate measurements of sparingly soluble compounds with the Coulter Counter model TAII. J. Pharm. Pharmacol. 37, 217–221 (1985)

    Article  Google Scholar 

  42. Oh, D.M., Curl, R.L., Amidon, G.L.: Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humens: A mathematical model. Pharm. Res. 10, 264–270 (1993)

    Article  Google Scholar 

  43. Oh, D.M., Curl, R.L., Yong, C.S., Amidon, G.L.: Effect of Micronization on the extent of drug absorption from suspensions in humans. Arch. Pharm. Res. 18, 427–433 (1995)

    Article  Google Scholar 

  44. Rabinow, B.E.: Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 3, 785–796 (2004)

    Article  Google Scholar 

  45. Shaw, T.R.D., Carless, J.E.: The effect of particle size on the absorption of digoxin. Eur. J. Clin. Pharmacol. 7, 269–273 (1974)

    Article  Google Scholar 

  46. Sheng, J.J., Sirois, P.J., Dressman, J.B., Amidon, G.L.: Particle diffusional layer thickness in a USP dissolution apparatus II: A combined function of particle size and paddle speed. J. Pharm. Sci. 97, 4815–4829 (2008)

    Article  Google Scholar 

  47. Simoes, S., Sousa, A., Figueiredo, M.: Dissolution rate studies of pharmaceutical multisized powders – A practical approach using the Coulter method. Int. J. Pharm. 127(283), 291 (1996)

    Google Scholar 

  48. Watari, N., Hanano, M., Kaneniwa, N.: Dissolution of slightly soluble drugs. VI. Effect of particle size of sulfadimethoxine on the oral bioavailability. Chem. Pharm. Bull. 28, 2221–2225 (1980)

    Article  Google Scholar 

  49. Willmann, S., Thelen, K., Becker, C., Dressman, J.B., Lippert, J.: Mechanism-based prediction of particle size-dependent dissolution and absorption: Cilostazol pharmacokinetics in dogs. Eur. J. Pharm. Biopharm. 76, 83–94 (2010)

    Article  Google Scholar 

  50. Wu, Y., Loper, A., Landis, E., Hettrick, L., Novak, L., Lynn, K., Chen, C., Thompson, K., Higgins, R., Batra, U., Shelukar, S., Kwei, G., Storey, D.: The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: A beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int. J. Pharm. 285, 135–146 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Sandri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sandri, G., Bonferoni, M.C., Ferrari, F., Rossi, S., Caramella, C.M. (2014). The Role of Particle Size in Drug Release and Absorption. In: Merkus, H., Meesters, G. (eds) Particulate Products. Particle Technology Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-00714-4_11

Download citation

Publish with us

Policies and ethics