Skip to main content

Effects of Particle Size, Surface Nature and Crystal Type on Dissolution Rate

  • Chapter
  • First Online:
Particles and Nanoparticles in Pharmaceutical Products

Abstract

Solid drug delivery systems are crucial formulations for the oral route. In such systems, particle size and polymorphism have a strong impact on drug dissolution and on drug absorption. Starting from the role of particle size in dissolution rate, the Noyes-Whitney equation, the modified form by Nernst-Brunner and the cube root equation are here described. According to these equations diffusion of a solute through a boundary layer around the particles is the rate limiting step for both drug dissolution and absorption and, thus, depends on the specific (external) surface area of the particles, the diffusion coefficient of the dissolved drug, the thickness of the boundary layer and the drug solubility. In relation to this, good wetting of the particle surface by the surrounding liquid and adequate particle dispersion play an essential role. Information from dissolution rates suggests that the thickness of the boundary layer is constant for larger particle sizes, but dependent upon size for smaller particles. Given the larger surface area of smaller particles, the attention has been directed to nanosystems and on their relevance to the bioavailability of poorly soluble drugs. A second advantage of such drug systems is that solubility increases on decreasing particle size, according to the Freundlich–Ostwald equation. The impact of polymorphism, pseudopolymorphism and amorphous form on drug dissolution and bioavailability is also described. Since dissolution and absorption are closely related, the effect of particle size and polymorphism on drug absorption is described. Moreover, regulatory implications of particle size and polymorphism are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdou HM (1989) Dissolution, Bioavailability and Bioequivalence. Easton, Mack

    Google Scholar 

  2. Amidon GL, Lennernas H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  CAS  Google Scholar 

  3. Anderberg EK, Nyström C, Bisrat M (1988) Physico-chemical aspects of drug release. VII. The effect of surfactant concentration and drug particle size on solubility and dissolution rate of Felodipine, a sparingly soluble drug. Int J Pharm 47:67–77

    Article  CAS  Google Scholar 

  4. Atkinson RM, Bedford C, Child KJ, Tomich EG (1962) Effect of particle size on blood griseofulvin levels in man. Nature 193:588–589

    Article  CAS  Google Scholar 

  5. Bisrat M, Nyström C (1988) Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int J Pharm 47:223–231

    Article  CAS  Google Scholar 

  6. Blagden N, de Matas M, Gavan PT, York P (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59:617–630

    Article  CAS  Google Scholar 

  7. Brunner E (1904) Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 43:56–102

    Google Scholar 

  8. Caramella C (1991) Utilizzazione dei parametri granulometrici nella progettazione di forme farmaceutiche. Boll Chim Farm 130:43–51

    CAS  Google Scholar 

  9. Carstensen JT (1980) Solid pharmaceutics: mechanical properties and rate phenomena. Academic Press Inc., New York

    Google Scholar 

  10. Dali MV, Carstensen JT (1996) Effect of change in shape factor of a single crystal on its dissolution behavior. Pharm Res 13:155–162

    Article  CAS  Google Scholar 

  11. Dressman JB, Amidon GL, Reppas C, Shah V (2008) Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 15:11–22

    Article  Google Scholar 

  12. Dressman JB, Reppas C (2000) In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci 11:73–80

    Article  Google Scholar 

  13. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X (2012) Drug nanocrystals: in vivo performances. J Control Rel 160:418–430

    Article  CAS  Google Scholar 

  14. Gibaldi M (1984) Biopharmaceutics and clinical pharmacokinetics, 3rd edn. Lea and Febiger, Philadelphia, pp 44–63

    Google Scholar 

  15. Hammond RB, Jeck S, Ma CY, Pencheva K, Roberts KJ, Auffret T (2009) An examination of binding motifs associated with inter-particle interactions between facetted nanocrystals of acetylsalicylic acid and ascorbic acid through the application of molecular grid-based search methods. J Pharm Sci 98:4589–4602

    Article  CAS  Google Scholar 

  16. Hammond RB, Pencheva K, Roberts KJ, Auffret T (2007) Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid. J Pharm Sci 96:1967–1973

    Article  CAS  Google Scholar 

  17. Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Tubic Grozdanis M, Lenhardt T, Langguth P (2007) Pharmacokinetic evaluation of oral feno! brate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev 59:419–426

    Article  CAS  Google Scholar 

  18. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  CAS  Google Scholar 

  19. Higuchi WI, Hiestand EN (1963) Dissolution rates of finely divided drug powders I: effect of a distribution of particle sizes in a diffusion-controlled process. J Pharm Sci 52:67–71

    Article  CAS  Google Scholar 

  20. Higuchi WI, Rowe EL, Hiestand EN (1963) Dissolution rates of finely divided drug powders II: micronized methylprednisolone. J Pharm Sci 52:162–164

    Article  CAS  Google Scholar 

  21. Hintz RJ, Johnson KC (1989) The effect of particle-size distribution on dissolution rate and oral absorption. Int J Pharm 51:9–17

    Article  CAS  Google Scholar 

  22. Hixson AW, Crowell JH (1931) Dependence of reaction velocity upon surface and agitation. Ind Eng Chem 23:923–931

    Article  CAS  Google Scholar 

  23. Jounela AJ, Pentikainen PJ, Sothmann A (1975) Effect of particle size on the bioavailability of digoxin. Eur J Clin Pharmacol 8:365–370

    Article  CAS  Google Scholar 

  24. Junemann D, Dressman JB (2012) Analytical methods for dissolution testing of nanosized drugs. J Pharm Pharmacol 64:931–943

    Article  CAS  Google Scholar 

  25. Kaneniwa N, Watari N (1974) Dissolution of slightly soluble drugs. I. Influence of particle size on dissolution behavior. Chem Pharm Bull 22:1699–1705

    Article  CAS  Google Scholar 

  26. Kaneniwa N, Watari N, Iijima H (1978) Dissolution of slightly soluble drugs. V. Effect of particle size on gastrointestinal drug absorption and its relation to solubility. Chem Pharm Bull 26:2603–2614

    Article  CAS  Google Scholar 

  27. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420:1–10

    Article  CAS  Google Scholar 

  28. Keck CM, Muller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm 62:3–16

    Article  CAS  Google Scholar 

  29. Kesisoglou F, Panmai S, Wu Y (2007) Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 59:631–644

    Article  CAS  Google Scholar 

  30. Kobayashi Y, Ito S, Itai S, Yamamoto K (2000) Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int J Pharm 193:137–146

    Article  CAS  Google Scholar 

  31. Li X, Gu L, Xu Y, Wang Y (2009) Preparation of fenofibrate nanosuspension and study of its pharmacokinetic behavior in rats. Drug Dev Ind Pharm 35:827–833

    Article  CAS  Google Scholar 

  32. Lipinski C (2002) Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev 5:82–85

    Google Scholar 

  33. Liversidge GG, Conzentino P (1995) Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm 125:309–313

    Article  CAS  Google Scholar 

  34. Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystal- line danazol in beagle dogs. Int J Pharm 125:91–97

    Article  CAS  Google Scholar 

  35. Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18:113–120

    Article  CAS  Google Scholar 

  36. Mosharraf M, Nystrom C (1995) The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm 122:35–47

    Article  CAS  Google Scholar 

  37. Mou D, Chen H, Wan J, Xu H, Yang X (2011) Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm 413:237–244

    Article  CAS  Google Scholar 

  38. Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19

    Article  CAS  Google Scholar 

  39. Muller RH, Peters K (1998) Nanosuspensions for the formulation of poorly soluble drugs I. Preparation by a size-reduction technique. Int J Pharm 160:229–237

    Article  CAS  Google Scholar 

  40. Nernst W (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 47:52–55

    CAS  Google Scholar 

  41. Neuvonen PJ (1979) Bioavailability of phenytoin: clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet 4:91–103

    Article  CAS  Google Scholar 

  42. Niebergall PJ, Milosovich G, Goyan JE (1963) Dissolution rate studies. 2. Dissolution of particles under conditions of rapid agitation. J Pharm Sci 52:236–241

    Article  CAS  Google Scholar 

  43. Ning X, Sun J, Han X, Wu Y, Yan Z, Han J, He Z (2011) Strategies to improve dissolution and oral absorption of glimepiride tablets: solid dispersion versus micronization techniques. Drug Dev Ind Pharm 37:727–736

    Article  CAS  Google Scholar 

  44. Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  45. Nyström C, Mazur J, Barnett MI, Glazer M (1985) Dissolution rate measurements of sparingly soluble compounds with the Coulter counter model TAII. J Pharm Pharmacol 37:217–221

    Article  Google Scholar 

  46. Oh DM, Curl RL, Amidon GL (1993) Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm Res 10:264–270

    Article  CAS  Google Scholar 

  47. Oh DM, Curl RL, Yong CS, Amidon GL (1995) Effect of micronization on the extent of drug absorption from suspensions in humans. Arch Pharm Res 18:427–433

    Article  CAS  Google Scholar 

  48. Pedersen PV, Brown KF (1976) Theoretical isotropic dissolution of non spherical particles. J Pharm Sci 65:1437–1442

    Article  CAS  Google Scholar 

  49. Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796

    Article  CAS  Google Scholar 

  50. Saifee M, Inamdar N, Dhamecha DL, Rathi AA (2009) Drug polymorphism: a review. Int J Health Res 2:292–306

    Google Scholar 

  51. Sandri G, Bonferoni MC, Ferrari F, Rossi S, Caramella C (2014) The role of particle size in drug release and absorption. In: Merkus HG, Meesters GMH (eds) Particulate products—tailoring properties for optimal performance, vol 19. Particle technology series, chap 11. Springer, Switzerland, pp 323–341

    Google Scholar 

  52. Shaw TRD, Carless JE (1974) The effect of particle size on the absorption of digoxin. Eur J Clin Pharmacol 7:269–273

    Article  CAS  Google Scholar 

  53. Sheng JJ, Sirois PJ, Dressman JB, Amidon GL (2008) Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed. J Pharm Sci 97:4815–4829

    Article  CAS  Google Scholar 

  54. Simoes S, Sousa A, Figueiredo M (1996) Dissolution rate studies of pharmaceutical multisized powders—a practical approach using the Coulter method. Int J Pharm 127(283):291

    Google Scholar 

  55. Wang J, Flanagan DR (2009) Fundamentals of dissolution. In: Qiu Y, Chen Y, Zhang G, Liu L, Porter W (eds) Developing solid oral dosage forms, pharmaceutical theory and practice, chap 13. Elsevier, USA, pp 309–318

    Chapter  Google Scholar 

  56. Watari N, Hanano M, Kaneniwa N (1980) Dissolution of slightly soluble drugs. VI. Effect of particle size of sulfadimethoxine on the oral bioavailability. Chem Pharm Bull 28:2221–2225

    Article  CAS  Google Scholar 

  57. Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K, Chen C, Thompson K, Higgins R, Batra U, Shelukar S, Kwei G, Storey D (2004) The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm 285:135–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Sandri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandri, G., Bonferoni, M.C., Rossi, S., Caramella, C.M., Ferrari, F. (2018). Effects of Particle Size, Surface Nature and Crystal Type on Dissolution Rate. In: Merkus, H., Meesters, G., Oostra, W. (eds) Particles and Nanoparticles in Pharmaceutical Products. AAPS Advances in the Pharmaceutical Sciences Series, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-94174-5_8

Download citation

Publish with us

Policies and ethics