Skip to main content
Log in

Analysis of the genetic diversity of physic nut, Jatropha curcas L. accessions using RAPD markers

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A sum of 48 accessions of physic nut, Jatropha curcas L. were analyzed to determine the genetic diversity and association between geographical origin using RAPD-PCR markers. Eight primers generated a total of 92 fragments with an average of 11.5 amplicons per primer. Polymorphism percentages of J. curcas accessions for Selangor, Kelantan, and Terengganu states were 80.4, 50.0, and 58.7%, respectively, with an average of 63.04%. Jaccard’s genetic similarity co-efficient indicated the high level of genetic variation among the accessions which ranged between 0.06 and 0.81. According to UPGMA dendrogram, 48 J. curcas accessions were grouped into four major clusters at coefficient level 0.3 and accessions from same and near states or regions were found to be grouped together according to their geographical origin. Coefficient of genetic differentiation (Gst) value of J. curcas revealed that it is an outcrossing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heller J (1996) Physic nut, Jatropha curcas L. Bioversity international

  2. King A, He W, Cuevas J, Freudenberger M, Ramiaramanana D, Graham I (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905

    Article  PubMed  CAS  Google Scholar 

  3. Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenerg 19:1–15

    Article  Google Scholar 

  4. Sunil N, Sivaraj N, Anitha K, Abraham B, Kumar V, Sudhir E, Vanaja M, Varaprasad K (2009) Analysis of diversity and distribution of Jatropha curcas L. germplasm using geographic information system (DIVA-GIS). Genet Resour Crop Evol 56:115–119

    Article  Google Scholar 

  5. Tatikonda L, Wani S, Kannan S, Beerelli N, Sreedevi T, Hoisington D, Devi P, Varshney R (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L.: a biofuel plant. Plant Sci 176:505–513

    Article  CAS  Google Scholar 

  6. Basha S, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386

    Article  CAS  Google Scholar 

  7. Sunil N, Varaprasad K, Sivaraj N, Suresh Kumar T, Abraham B, Prasad R (2008) Assessing Jatropha curcas L. germplasm in situ–a case study. Biomass Bioenerg 32:198–202

    Article  CAS  Google Scholar 

  8. Shuit S, Lee K, Kamaruddin A, Yusup S (2010) Reactive extraction and in situ esterification of Jatropha curcas L. seeds for the production of biodiesel. Fuel 89:527–530

    Article  CAS  Google Scholar 

  9. Kaushik N, Kumar K, Kumar S, Roy S (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenerg 31:497–502

    Article  CAS  Google Scholar 

  10. Ginwal H, Phartyal S, Rawat P, Srivastava R (2005) Seed source variation in morphology, germination and seedling growth of Jatropha curcas Linn. in central India. Silvae Genetica 54:76–79

    Google Scholar 

  11. Rao G, Korwar G, Shanker A, Ramakrishna Y (2008) Genetic associations, variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas (L.) accessions. Trees Struct Funct 22:697–709

    Article  Google Scholar 

  12. Sun Q, Li L, Li Y, Wu G, Ge X (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865

    Article  CAS  Google Scholar 

  13. Ginwal H, Rawat P, Srivastava R (2004) Seed source variation in growth performance and oil yield of Jatropha curcas Linn. in central India. Silvae Genetica 53:186–191

    Google Scholar 

  14. Solouki M, Mehdikhani H, Zeinali H, Emamjomeh A (2008) Study of genetic diversity in Chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci Hortic 117:281–287

    Article  CAS  Google Scholar 

  15. Sergio L, Gianni B (2005) Molecular markers based analysis for crop germplasm preservation. Paper presented at the FAO Meeting on the role of biotechnology for the characterisation and conservation of crops, forestry, animal and fishery genetic resources, Turin, Italy, 5–7 March 2005

  16. Graner A, Ludwig WF, Melchinger AE (1994) Relationships among European barley germplasm II. Comparison of RFLP and pedigree data. Crop sci 34:1199–1205

    Article  Google Scholar 

  17. Latif MA, Rafii Yusop M, Motiur Rahman M, Bashar Talukdar M (2011) Microsatellite and minisatellite markers based DNA fingerprinting and genetic diversity of blast and ufra resistant genotypes. C R Biol 5(4):361–368

    Google Scholar 

  18. Abdullah N, Rafii Yusop M, Ithnin M, Saleh G, Latif MA (2011) Genetic variability of oil palm parental genotypes and performance of it’s’ progenies as revealed by molecular markers and quantitative traits. C R Biol 334(4):290–299

    Article  PubMed  CAS  Google Scholar 

  19. Ashkani S, Rafii MY, Rusli I, Meon S, Siti Nor Akmar A, Abdul Rahim H, Latif MA (2012) SSRs for marker assisted selection for blast resistance in rice (Oryza sativa L.). Plant Mol Biol Rep 30(1):79–86. doi:10.1007/s11105-011-0315-4

    Article  Google Scholar 

  20. Sudheer Pamidimarri D, Singh S, Mastan S, Patel J, Reddy M (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364

    Article  PubMed  CAS  Google Scholar 

  21. Franco J, Crossa J, Ribaut J, Bertran J, Warburton M, Khairallah M (2001) A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theor Appl Genet 103:944–952

    Article  Google Scholar 

  22. Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    Article  CAS  Google Scholar 

  23. Rohlf F (2002) NTSYS-pc: numerical taxonomy system, version 2.1 Exeter Publishing. Ltd., Setauket, New York, USA

  24. Nei M (1987) Molecular evolutionary genetics. Columbia University Press 4:406–425

    Google Scholar 

  25. Moyano C, Alfonso C, Gallego J, Raposo R, Melgarejo P (2003) Comparison of RAPD and AFLP marker analysis as a means to study the genetic structure of Botrytis cinerea populations. Eur J Plant Pathol 109:515–522

    Article  CAS  Google Scholar 

  26. Yeh F, Boyle T (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  27. Ganesh Ram S, Parthiban K, Senthil Kumar R, Thiruvengadam V, Paramathma M (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 55:803–809

    Article  Google Scholar 

  28. Kumar R, Tripathi Y, Shukla P, Ahlawat S, Gupta V (2009) Genetic diversity and relationships among germplasm of Jatropha curcas L. revealed by RAPDs. Trees Struct Funct 23:1075–1079

    Article  CAS  Google Scholar 

  29. Sudheer Pamidiamarri D, Pandya N, Reddy M, Radhakrishnan T (2009) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP. Mol Biol Rep 36:901–907

    Article  PubMed  CAS  Google Scholar 

  30. Achten W, Nielsen L, Aerts R, Lengkeek A, Kjær E, Trabucco A, Hansen J, Maes W, Graudal L, Akinnifesi F (2010) Towards domestication of Jatropha curcas. Biofuels 1:91–107

    Article  CAS  Google Scholar 

  31. Shabanimofrad M, Yusop MR, Saad MS, Megat Wahab PE, Biabani AR, Latif MA (2011) Diversity of physic nut (Jatropha curcas) in Malaysia: application of DIVA—geographic information system and cluster analysis. Aust J Crop Sci 5(4):361–368

    Google Scholar 

  32. Boora K, Dhillon R (2009) Evaluation of genetic diversity in Jatropha curcas L. using RAPD markers. Indian J Biotechnol 9(1):50–57

    Google Scholar 

  33. Song Z, Guan Y, Rong J, Xu X, Lu B (2006) Inter-simple sequence repeat (ISSR) variation in populations of the cutgrass Leersia hexandra. Aquat Bot 84:359–362

    Article  CAS  Google Scholar 

  34. Nybom H, Bartish I (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  35. Phan H, Ford R, Taylor P (2003) Population structure of Ascochyta rabiei in Australia based on STMS fingerprints. Fungal Divers 13:111–129

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to the authority of Universiti Putra Malaysia for supporting this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Rafii.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 399 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafii, M.Y., Shabanimofrad, M., Puteri Edaroyati, M.W. et al. Analysis of the genetic diversity of physic nut, Jatropha curcas L. accessions using RAPD markers. Mol Biol Rep 39, 6505–6511 (2012). https://doi.org/10.1007/s11033-012-1478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1478-2

Keywords

Navigation