Skip to main content
Log in

Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

QTL for stem sugar-related and other agronomic traits were identified in a converted sweet (R9188) × grain (R9403463-2-1) sorghum population. QTL analyses were conducted using phenotypic data for 11 traits measured in two field experiments and a genetic map comprising 228 SSR and AFLP markers grouped into 16 linkage groups, of which 11 could be assigned to the 10 sorghum chromosomes (SBI-01 to SBI-10). QTL were identified for all traits and were generally co-located to five locations (SBI-01, SBI-03, SBI-05, SBI-06 and SBI-10). QTL alleles from R9188 were detected for increased sucrose content and sugar content on SBI-01, SBI-05 and SBI-06. R9188 also contributed QTL alleles for increased Brix on SBI-05 and SBI-06, and increased sugar content on SBI-03. QTL alleles from R9403463-2-1 were found for increased sucrose content and sucrose yield on SBI-10, and increased glucose content on SBI-07. QTL alleles for increased height, later flowering and greater total dry matter yield were located on SBI-01 of R9403463-2-1, and SBI-06 of R9188. QTL alleles for increased grain yield from both R9403463-2-1 and R9188 were found on SBI-03. As an increase in stem sugars is an important objective in sweet sorghum breeding, the QTL identified in this study could be further investigated for use in marker-assisted selection of sweet sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aitken K, Jackson P, McIntyre C (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo) logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Aitken K, Jackson P, McIntyre C (2006) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar x Saccharum officinarum population. Theor Appl Genet 112:1306–1317

    Article  PubMed  CAS  Google Scholar 

  • Albertson P, Grof C (2007) Application of high performance anion exchange-pulsed amperometric detection to measure the activity of key sucrose metabolising enzymes in sugarcane. J Chromatogr B 845:151–156

    Article  CAS  Google Scholar 

  • Al-Janabi S, Honeycutt R, Sobral B (1994a) Chromosome assortment in Saccharum. Theor Appl Genet 89:959–963

    Article  Google Scholar 

  • Al-Janabi S, McClelland M, Petersen C, Sobral B (1994b) Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor Appl Genet 88:933–944

    Article  CAS  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra A, Hart G (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  PubMed  CAS  Google Scholar 

  • Butler D, Cullis B, Gilmour A, Gogel B (2003) SAMM, reference manual. In: Technical report. Queensland Department of Primary Industries

  • Crasta O, Xu W, Rosenow D, Mullet J, Nguyen H (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association of QTLs influencing premature senescence and maturity. Mol Genet Genomics 262:579–588

    Article  CAS  Google Scholar 

  • Cuiyan Z (1998) Review and perspective on sweet sorghum breeding in China. Int Sorghum Millets Newsl 39:70–71

    Google Scholar 

  • Cullis B, Gleeson A (1991) Spatial analysis of field experiments—an extension to two dimensions. Biometrics 47:1449–1460

    Article  Google Scholar 

  • Dufour P, Grivet L, D’Hont A, Deu M, Trouche G, Glaszmann J, Hamon P (1996) Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane. Theor Appl Genet 92:1024–1030

    Article  CAS  Google Scholar 

  • Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, Lanaud C, Glaszmann J, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418

    Article  CAS  Google Scholar 

  • Feltus F, Hart G, Schertz F, Casa A, Brown P, Klein P, Kresovich S, Paterson A (2006) Genetic map alignment and QTL correspondence between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Ferraris R, Charles-Edwards D (1986) A comparative analysis of the growth of sweet and forage sorghum crops II accumulation of soluble carbohydrates and nitrogen. Aust J Agric Res 37:513–533

    Article  CAS  Google Scholar 

  • Grivet L, D’Hont A, Dufour P, Hamon P, Roques D, Glaszmann J (1994) Comparative genome mapping of sugarcane with other species within the Andropogoneae tribe. Heredity 73:500–508

    Article  CAS  Google Scholar 

  • Guimaraes C, Sills G, Sobral B (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266

    Article  PubMed  CAS  Google Scholar 

  • Hart G, Schertz K, Peng Y, Syed N (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Hoisington D (1992) Laboratory protocols: CIMMYT applied molecular genetics laboratory. CIMMYT, Mexico

    Google Scholar 

  • Hunter E, Anderson I (1997) Sweet sorghum. In: Janick J (ed) Horticultural reviews. Wiley, New York, pp 73–104

    Google Scholar 

  • Kim J-S, Klein P, Klein R, Price H, Mullet J, Stelly D (2004) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Rodriguez-Herrera R, Schlueter J, Klein P, Yu Z, Rooney W (2001) Identification of genomic regions that affect grain mold incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Kong L, Dong L, Hart G (2000) Characteristics, linkage-map positions and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Lin Y-R, Schertz K, Paterson A (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • McBee G, Waskom R, Miller F, Creelman R (1983) Effect of senescence and nonsenescence on carbohydrates in sorghum during late kernel maturity states. Crop Sci 23:370–375

    Google Scholar 

  • Menz M, Klein R, Mullet J, Obert J, Unruh N, Klein P (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Mester D, Ronin Y, Minkov D, Nevo E, Korol A (2003) Constructing large-scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269–2282

    PubMed  CAS  Google Scholar 

  • Ming R, Liu S, Lin Y, da Silva J, Wilson W, Braga D, van Deynz A, Wenslaff T, Wu K, Moore P, Burnquist W, Sorrells M, Irvine J, Paterson A (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organisation of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Ming R, Liu S, Bowers J, Moore P, Irvine J, Paterson A (2002a) Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583

    CAS  Google Scholar 

  • Ming R, Wang Y, Draye X, Moore P, Irvine J, Paterson A (2002b) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  PubMed  CAS  Google Scholar 

  • Multipoint, Accessed 16/05/07, MultiQTL—the best QTL mapping software, www.multiqtl.com

  • Natoli A, Gorni C, Chegdani F, Ajmone Marson P, Colombi C, Lorenzoni C, Marocco A (2002) Identification of QTLs associated with sweet sorghum quality. Maydica 47:311–322

    Google Scholar 

  • Pereira M, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  Google Scholar 

  • Rami J-F, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Reddy B, Ramesh S, Reddy S, Ramaiah B, Salimath P, Kachapur R (2005) Sweet sorghum—a potential alternate raw material for bio-ethanol and bio-energy. Int Sorghum Millets Newsl 46:79–86

    Google Scholar 

  • Reddy B, Reddy P (2003) Sweet sorghum: characteristics and potential. Int Sorghum Millets Newsl 44:26–28

    Google Scholar 

  • Reffay N, Jackson P, Aitken K, Hoarau J-Y, D’Hont A, Besse P, McIntyre C (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breed 15:367–381

    Article  CAS  Google Scholar 

  • Tao Y, Manners J, Ludlow M, Henzell R (1993) DNA polymorphisms in grain sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 86:679–688

    Article  CAS  Google Scholar 

  • Tao Y, Jordan D, Henzell R, McIntyre C (1998) Construction of a genetic map in a sorghum RIL population using probes from different sources and its comparison with other sorghum maps. Aust J Agric Res 49:729–736

    Article  CAS  Google Scholar 

  • Van Os H, Stam P, Visser R, Van Eck H (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  PubMed  CAS  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van Der Lee T, Hornes M (1995) AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten C, Gaffney P, Zeng Z-B (2004) WinQTL Cartographer. Bioinformatics Research Center, North Carolina State University)

  • Yang J, Hu C, Ye X, Zhu J (2005) QTLNetwork-2.0. Institute of Bioinformatics, Zhejiang University, Hangzhou, China. http://ibi.zju.edu.cn/software/qtlnetwork

  • Yun-long B, Seiji Y, Maiko I, Hong-wei C (2006) QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench). Agric Sci China 5:736–744

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Sugar Research and Development Corporation (SRDC) to the first author. The authors thank Donna Glassop (CSIRO) for her assistance with the HPLC, Colleen Hunt (DPIF) for her statistical analyses and Kirsten Halloran (DPIF) for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberley B. Ritter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, K.B., Jordan, D.R., Chapman, S.C. et al. Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breeding 22, 367–384 (2008). https://doi.org/10.1007/s11032-008-9182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9182-6

Keywords

Navigation