Skip to main content
Log in

Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Irreversible damage of the plant plasma membrane is the primary cause of freezing injury. Changes in lipid unsaturation have being largely studied as one of the major components aimed at preserving the integrity and functionality of plasma membranes, and increasing freezing tolerance. In the present study, the potato stearoyl-ACP desaturase (ω-9) gene, encoding the first enzyme involved in plant lipid unsaturation, was cloned and used to monitor its expression during cold acclimation in plants of two Solanum species, known to differ in their ability to cold acclimate. Although up-regulated upon cold acclimation in both potato species, freezing tolerant S. commersonii plants had a constitutive level of the ω-9 desaturase gene transcripts and of other known stress protective proteins (dhn2 and cpn60β) remarkably higher than plants of the not freezing tolerant potato species (S. tuberosum). Transcript levels of oleoyl-desaturase (ω-6) and linoleyl CoA desaturase (ω-3), microsomal desaturases involved in further plasma membrane fatty acid (FA) unsaturation, did not vary appreciably during cold acclimation in both potato species. S. tuberosum potato plants overexpressing the ω-9 desaturase gene were generated, to change FA lipid composition and measure the effect on the basal level freezing tolerance of cultivated potato varieties. Unsaturation level of total leaf polar lipids of one of best ω-9 desaturase overexpressing line, with a high transcript level of the exogenous gene and related protein, was slightly higher compared to potato plants transformed with the empty vector, with the notable appearance of cis-vaccenic acid (C18:1 Δ11), an unusual monoic FAs in plants. Freezing tolerance, estimated as an increase in LT50 (2°C), derived from the electrolyte leakage test, enhanced in ω-9 desaturase overexpressing transgenic potato plants only upon cold acclimation. These results indicate that modifications in lipid unsaturation account for only a small fraction of the acquired freezing tolerance, while interaction with other protective proteins (dhn2, cpn60β) is necessary to fulfil a higher level of freezing tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CA:

Cold acclimated

FA:

Fatty acid

NA:

Non-acclimated

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

ω-3:

Linoleyl COA desaturase

ω-6:

Oleoyl-desaturase

ω-9:

Stearoyl-ACP desaturase

References

  • Balogi Z, Török Z, Balogh G, Josfay K, Shigapova N, Vierling E, Vigh L, Horvath I (2005) Heat shock lipid in cyanobacteria during heat/light-accumulation. Arch Biochem Biophys 436:346–354

    Article  PubMed  CAS  Google Scholar 

  • Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T (1998) Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature. Plant Mol Biol 36:297–306

    Article  PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Cahoon EB, Shanklin J (2000) Substrate-dependent mutant complementation to select fatty acid desaturase variants for metabolic engineering of plant seed oils. Proc Natl Acad Sci USA 97:12350–12355

    Article  PubMed  CAS  Google Scholar 

  • Cardi T, Iannamico V, D′Ambrosio F, Filippone E, Lurquin PF (1993) In vitro regeneration and cytological characterization of shoots from leaf explants of three accessions of Solanum commersonii. Plant Cell Tissue Organ Cult 34:107–114

    Article  Google Scholar 

  • Carputo D, Terra A, Barone A, Esposito F, Fogliano V, Monti L, Frusciante L (2003) Glycoalkaloids and acclimation capacity of hybrids between Solanum tuberosum and the incongruent hardy species Solanum commersonii. Theor Appl Genet 107:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Chomeczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Clarkson DT, Hall KC, Roberts JKM (1980) Phospholipids composition and fatty acid desaturation in the roots of rye during acclimatization of low temperature. Planta 149:464–471

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  CAS  Google Scholar 

  • de Mendoza D, Cronan JE (1983) Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem Sci 8:49–52

    Article  Google Scholar 

  • Fox BG, Shanklin J, Somerville CR, Munck E (1993) Stearoyl-acyl carrier protein Δ9 desaturase from Ricinus communis is a diiron-oxo protein. Proc Natl Acad Sci USA 90:2486–2490

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi-Mizutani M, Tasaka Y, Tanaka Y, Ashikari T, Kusumi T, Murata N (1998) Characterization of Δ9 acyl-lipid desaturase homologues from Arabidopsis thaliana. Plant Cell Physiol 39:247–253

    PubMed  CAS  Google Scholar 

  • Hazel JR (1997) Thermal adaptation in biological membranes: beyond homeoviscous adaptation. In: Williams JS (ed) Advances in molecular and cell biology, vol 19. JAI Press, New York, pp 57–101

    Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996) Developmental and growth temperature regulation of the two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi G, Fuse T, Kawakami N, Kodama H, Iba K (2000) Temperature-dependent translation regulation of the ER ω-3 fatty acid desaturase genes in wheat root tips. Plant J 24: 805–813

    Article  PubMed  CAS  Google Scholar 

  • Horvath I, Vigh L, Farkas T (1981) The manipulation of polar head group composition of phospholipids in the wheat Miranovskaja 808 affects frost tolerance. Planta 151:103–108

    Article  CAS  Google Scholar 

  • Houde M, Dallaire S, N′Dong D, Sahan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol 2:381–387

    Article  CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T, Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a non specific cyanobacterial desaturase. Nat Biotechnol 14:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Braille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  PubMed  CAS  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vescicled. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed  CAS  Google Scholar 

  • Kodama H, Hamada T, Horiguchi G, Nishimuri M, Iba K (1994) Genetic enhacement of cold tolerance by expression of a gene for chloroplast ω3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105:601–605

    PubMed  CAS  Google Scholar 

  • Kodama H, Horiguchi G, Nishiuchi T, Nishimura M, Iba K (1995) Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiol 107:1177–1185

    PubMed  CAS  Google Scholar 

  • Leone A, Costa A, Tucci M, Grillo S (1994) Adaptation versus shock response to PEG-induced low water potential in cultured potato cells. Physiol Plant 92:21–30

    Article  CAS  Google Scholar 

  • Leone A, Costa A, Grillo S, Tucci M, Horvarth I, Vigh L (1996) Acclimation to low water potential determines changes in membrane fatty acid composition and fluidity in potato cells. Plant Cell Environ 19:1103–1109

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress. Chilling, freezing, and high temperature stresses, 2nd edn. Academic Press, New York

    Google Scholar 

  • Li W, Li M, Zhang W, Weeti R, Wang X (2004) The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433

    Article  PubMed  CAS  Google Scholar 

  • Marsh D (1990) CRC handbook of lipid bilayers. CRC Press, Boca Raton, FL

    Google Scholar 

  • Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsatured fatty acid synthesis. J Biol Chem 267:1502–1509

    PubMed  CAS  Google Scholar 

  • Miquel M, James D Jr, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Nat Acad Sci USA 90:6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Hzebrocek J, Hildebrand DF (2001) Changes in fatty acid composition in plant tissues expressing mammalian delta9 desaturase. Lipids 35:471–479

    Article  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    Article  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    Article  PubMed  CAS  Google Scholar 

  • Orlova IV, Serebriiskaya TS, Popov V, Merkulova N, Nosov AM, Trunova TI, Tsydendambaev VD, Los DA (2003) Transformation of tobacco with a gene for thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol 44:447–450

    Article  PubMed  CAS  Google Scholar 

  • Palta JP, Whitaker BA, Weiss LS (1993) Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species. Plant Physiol 103:793–803

    PubMed  CAS  Google Scholar 

  • Quinn PJ, Joo F, Vigh L (1989) The role of unsaturated lipids in membrane structure and stability. Progr Biophys Mol Biol 53:71–103

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor New York

    Google Scholar 

  • Schardl C, Byrd AD, Benzion GB, Altschuler MA, Hildebrand DF, Hunt AG (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61:1–11

    Article  PubMed  CAS  Google Scholar 

  • Shibahara A (1993) Novel pathways of oleic, cis-vaccenic and n-5 monoenoic acid biosynthesis by an enzymatic double-bond shifting reaction in higher plants. In: Murata N, Somerville C (eds) Biochemistry and molecular biology of membrane and storage lipids of Plants. Curr Topics Plant Physiol vol 9. An American Society of Plant Physiologists Series, pp 33–39

  • Smolenska G, Kuiper PJC (1977) Effect of low temperature upon lipid and fatty acid composition of roots and leaves of winter rape plants. Physiol Plant 41:29–35

    Article  CAS  Google Scholar 

  • Steponkus PL (1984) Role of plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Balsamo RA, Arvinte T, Lynch DV (1988) Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proc Natl Acad Sci USA 85:9026–9030

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat. Two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low temperature biology, vol 2. JAI Press, Ltd, London, pp 211–312

    Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the CORI5a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  PubMed  CAS  Google Scholar 

  • Stone JM, Palta JP, Bamberg JB, Weiss LS, Harbage JF (1993) Inheritance of freezing resistance in tuber-bearing Solanum species: evidence for independent genetic control of non-acclimated freezing tolerance and cold acclimation capacity. Proc Natl Acad Sci USA 90:7869–7873

    Article  PubMed  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and a Rabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Trinca S, De Pace C, Caccia R, Mugnozza GS, Dodds JH, Jaynes J (1991) Transformation of potato (Solanum tuberosum L.) leaf disc using A. tumefaciens transfer DNA sequences coding for lytic peptides. In: Molecular methods for potato improvement. Report of the planning conference on application of molecular techniques to potato germplasm enhancement. International Potato Center (CIP), Perù, 5–9 March 1990, pp 85–91

  • Uemura M, Gilmour SJ, Thomashow MF, Steponkus PL (1996) Effects of COR6.6 and COR15 polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on the freeze-induced fusion and leakage of liposomes. Plant Physiol 111:313–327

    Article  PubMed  CAS  Google Scholar 

  • Vega SE, Del Rio AH, Bamberg JB, Palta JP (2004) Evidence for the up-regulation of stearoyl-ACP (Δ9) desaturase gene expression during cold acclimation. Am J Potato Res 81:125–135

    Article  CAS  Google Scholar 

  • Vigh L, Horvath I, Woltjes J, Farkas T, van Hasselt P, Kuiper PJC (1987) Combined electron-spin resonance, X-ray diffraction studies on phospholipids vesicles obtained from cold-hardened wheats. Planta 170:14–19

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shaseyov O, Altman A (2004) Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 5:244–252

    Article  CAS  Google Scholar 

  • Wolter FP, Schmidt R, Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11:4685–4692

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Marina Tucci and Dr. Federica Consiglio for their contribution in the initial cloning steps of desaturase genes. Contribution no. 89 of the Institute of Plant Genetics, National Research Council, Portici, Italy. This work was partially supported by the Cluster Project 02 “Biotecnologie Applicate all’Uomo” of the Italian Ministry of University and Science (MIUR) to AL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica De Palma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Palma, M., Grillo, S., Massarelli, I. et al. Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants. Mol Breeding 21, 15–26 (2008). https://doi.org/10.1007/s11032-007-9105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-007-9105-y

Keywords

Navigation