Skip to main content

Advertisement

Log in

Higher Allocation to Low Cost Chemical Defenses in Invasive Species of Hawaii

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The capacity to produce carbon-based secondary compounds (CBSC), such as phenolics (including tannins) and terpenes as defensive compounds against herbivores or against neighboring competing plants can be involved in the competition between alien and native plant species. Since the Hawaiian Islands are especially vulnerable to invasions by alien species, we compared total phenolic (TP), total tannin (Tta), and total terpene (TT) leaf contents of alien and native plants on Oahu Island (Hawaii). We analyzed 35 native and 38 alien woody plant species randomly chosen among representative current Hawaiian flora. None of these CBSC exhibited phylogenetic fingerprinting. Alien species had similar leaf TP and leaf Tta contents, and 135% higher leaf TT contents compared with native species. Alien plants had 80% higher leaf TT:N leaf content ratio than native plants. The results suggest that apart from greater growth rate and greater nutrient use, alien success in Oahu also may be linked to greater contents of low cost chemical defenses, such as terpenes, as expected in faster-growing species in resource rich regions. The higher TT contents in aliens may counterbalance their lower investment in leaf structural defenses and their higher leaf nutritional quality. The higher TT provides higher effectiveness in deterring the generalist herbivores of the introduced range, where specialist herbivores are absent. In addition, higher TT contents may favor aliens conferring higher protection against abiotic and biotic stressors. The higher terpene accumulation was independent of the alien species origin, which indicates that being alien either selects for higher terpene contents post-invasion, or that species with high terpene contents are pre-adapted to invasiveness. Although less likely, an originally lower terpene accumulation in Hawaiian than in continental plants that avoids the increased attraction of specialist enemies associated to terpenes may not be discarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrectsen, B.R., Gardfjell, H., Orians, C.M., Murray, B., and Fritz, R.S. 2004. Slugs, willow seedlings and nutrient fertilization: intrinsic vigour inversely affects palatability. Oikos 105:268–278.

    Article  Google Scholar 

  • Allison, S.D., and Vitiusek, P.M. 2004. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141:612–619.

    Article  PubMed  Google Scholar 

  • Baruch, Z., and Goldstein, G. 1999. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawai’i. Oecologia 121:183–192.

    Article  Google Scholar 

  • Beck, S.D., and Schoonhoven, L.M. 1980. Insect behaviour and plant resistance. pp. 115–135. In: Maxwell, F.G., Jennings, P.R. (eds.) Breeding Plant Resistance to Insects. J. Willey and Sons, New York

    Google Scholar 

  • Bennet, R., and Wallsgrove, R.M. 1994. Secondary metabolites in plant defense mechanisms. New Phytol. 127:617–633,

    Article  Google Scholar 

  • Bernays, E.A., and Chapman, R.E. 1994. Host Plant Selection by Phytophagus Insects. Chapman and Hall, New York, New York.

    Google Scholar 

  • Bi, J.L., Felton, G.W., Murphy, J.B., Howles, P.A., Dixon, R.A., and Lamb, C.J. 1997. Do plant phenolics confer resistance to specialist and generalist insect herbivore? J. Agricul. Food Chem. 45:4500–4504.

    Article  CAS  Google Scholar 

  • Blomberg, S.P., Garland, T. Jr., and Ives, A.R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745.

    PubMed  Google Scholar 

  • Blossey, B., and Nötzold, B. 1995. Evolution of increased competitive ability in invasive non indigenous plants: a hypothesis. J. Ecol. 83:887–889.

    Article  Google Scholar 

  • Blumenthal, D.M., and Hufbauer, R.A. 2007. Increased plant size in exotic populations: a common-garden test with 14 invasive species. Ecology 88:2758–2765.

    Article  PubMed  Google Scholar 

  • Boege, K., and Dirzo, R. 2004. Intraspecific variation in growth, defense and herbivory in Dalium guianense (Caesalpiniaceae) mediated by edaphic heterogeneity. Plant Ecol. 175:59–69.

    Article  Google Scholar 

  • Bryant, J.P., Chapin, F.S. III, and Klein, D.R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

    Article  CAS  Google Scholar 

  • Cipollini, D., Stevenson, R., Enright, S., Eyles, A., and Bonello, P. 2008. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34:144–152.

    Article  CAS  PubMed  Google Scholar 

  • Coley, P. D., Bryant, J. P., and Chapin, F. S. 1985. Resource availability and plant antiherbivore defense. Science 230:895–899.

    Article  CAS  PubMed  Google Scholar 

  • Daehler, C. C., and Baker, R. F. 2006. New records of naturalized and naturalizing plants around Lyon Arboretum, Manoa Valley, Oahu. pp. 3–18. In: Evenhuis, N. L., and Eldredge L. G. (eds). Records of the Hawaii Biological Survey for 2004–2005. Part 1: Articles. Bishop Museum Occasional Papers, 87. Honolulu: Bishop Museum.

  • Daehler, C. C., Denslow, J. S., Ansari, S., and Kuo, H. F. 2004. A risk assessment system for screening out invasive pest plants from Hawai'i and other Pacific Islands. Conserv. Biol. 18:360–368.

    Article  Google Scholar 

  • Deenik, J., and Mcclellan, A. T. 2007. Soils of Hawai‘i. Soil and Crop Management, SCM-20. Honolulu: Cooperative Extension Service, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa.

  • Dicke, M., and Baldwin, T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help”. Trends Plant Sci. in press

  • Eck, G., Fiala, B., Linsenmair, Hashim, R. B., and Proksh, P. 2001. Trade-off between chemical and biotic antiherbivore defense in the south east Asian plant Genus Macaranga. J. Chem. Ecol. 27:1979–1996

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn, M. D., Fagan, K. C., Compton, S. G., Dent, D. H., and Hartley, S. E. 2007. Explaining leaf herbivory rates on tree seedlings in a Malasian rain forest. Biotropica 39:416–421.

    Article  Google Scholar 

  • Filella, I., and Peñuelas, J. 1999. Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododedron ferrugineum in the Mediterranean region. Plant Ecol. 145: 157–162.

    Article  Google Scholar 

  • Funk, J. L., and Vitousek, P. M. 2007. Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081.

    Article  CAS  PubMed  Google Scholar 

  • Garland, T. J., Harvey, P. H., and Ives A. R. 1993. Procedures for the analysis of comparative data using phylogenetically independent contrast. Syst. Biol. 41:18–32.

    Google Scholar 

  • Gershenzon, J., and Duradeva, N. 2007. The function of terpene natural products in the natural world. Nature Chem. Biol. 3:408–414.

    Article  CAS  Google Scholar 

  • Giambelluca, T. W., Nullet, M. A., and Schroeder, T. A. 1986. Rainfall atlas of Hawai'i. Hawa'i Division of Water and Land Development, Department of Land and Natural Resources, Honolulu. 267.

    Google Scholar 

  • Goverde, M., Bazin, A., Shykoff, J. A., Erhardt, A. 1999. Influence of leaf chemistry of Lotus corniculatus (Fabaceae) on larval development of Polyommatus icarus (Lepidoptera, Lycaenidae): effects of elevated CO2 and plant genotype. Funct. Ecol. 13:801–810.

    Article  Google Scholar 

  • Hamilton, J.G., Zangerl, A.R., Delucia, E.H., and Berenbaum, M.R. 2001. The carbon.nutrient balance hypothesis: its rise and fall. Ecol. Let. 4:86–95.

    Article  Google Scholar 

  • Harley, P. C., Litvak, M.E., Sharkey, T. D., and Monson R.K. 1994. lsoprene Emission from Velvet Bean Leaves' lnteractions among Nitrogen Availability, Crowth Photon Flux Density, and Leaf Development. Plant Physiol., 105:279–285.

    CAS  PubMed  Google Scholar 

  • Harrington, R. A., and Ewel, J. J. 1997. Invasibility of tree plantations by native and non-indigenous plant species in Hawaii. Forest Ecol. Manag. 99:153–162.

    Article  Google Scholar 

  • Hughes, R.F., and Denslow, J.S. 2005. Invasion by a N2-fixing tree alters function and structure in wet lowland forest of Hawaii. Ecol. Appl. 15:1615–1628.

    Article  Google Scholar 

  • Hughes, R.F., and Uowolo, A. 2006. Impacts of Falcataria moluccana invasion on decomposition in Hawaiian lowland wet forest: The importance of stand-level controls. Ecosystems 9:977–991.

    Article  CAS  Google Scholar 

  • Hull-Sanders, H. M., Clare, R., Johnson, R. H., and Meyer, G.A. 2007. Evaluation of the evolution of increased competitive ability (EICA) hypothesis: loss of defense against generalist but not specialist herbivores. J. Chem. Ecol. 33:781–799.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, J., and Vrieling, K. 2005. The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol. Lett. 8:704–714.

    Article  Google Scholar 

  • Khanh, T. D., Cong, L. C., Xuan, T. D., Lee, S. J., Kong, D. S., and Chung, L. M. 2008. Weed-suppressing potential of dodder (Cuscuta hygrophilae) and its phytotoxic constituients. Weed Sci. 56:119–127.

    Article  CAS  Google Scholar 

  • Koricheva, J. 2002. The carbon-nutrient balance hypothesis is dead; long live the carbon-nutrient balance hypothesis?. Oikos 98:537–539

    Article  CAS  Google Scholar 

  • Kouki, M., and Manetas, Y. 2002. Toughness is less important than chemical composition of Arbutus unedo leaves in food selection by Poecilimon specoes. New Phytol. 154:399–407.

    Article  CAS  Google Scholar 

  • Kurokawa, H., and Nakashizuka, T. 2008. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89:2645–2656.

    Article  PubMed  Google Scholar 

  • Kursar T. A., and Coley, P.D. 2003. Convergente in defense síndromes of young leaves in tropical rainforests. Biochem. System. Ecol. 31:929–949.

    Article  CAS  Google Scholar 

  • Landau, I., Mullerscharer, H., and Ward, P. I. 1994. Influence of cnicin, a sesquiterpene lactone of Centaurea maculosa (Asteraceae), on specialist and generalist herbivores. J. Chem. Ecol. 20:929–942.

    Article  CAS  Google Scholar 

  • Lankau, R.R. 2007. Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol. 175:176–184.

    Article  PubMed  Google Scholar 

  • Lavin, S. R., Karasov, W. H., Ives, A. R., Middlrton, K. M., and Garland, T. Jr. 2008. Morphometrics of the avian small intestine compared with that of nonflying mammals: A phylogenetic approach. Physiol. Biochem. Zool. 81:526–550.

    Article  PubMed  Google Scholar 

  • Legar, E. A., and Forister, M. L. 2005. Increased resistance to generalist herbivores in invasive populations of the California poppy (Eschscholzia californica). Divers. Distribution 11:311–317.

    Article  Google Scholar 

  • Lewis, K. C., Bazzaz, F. A., Liao, Q., and Orians, C. M. 2006. Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata. Oecologia 148:384–395.

    Article  PubMed  Google Scholar 

  • Litvak, M. E., Loreto, F., Harley, P. C., Sharkey, T. D., and Monson, R. K. 1996. The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees. Plant Cell Environ. 19:549–559.

    Article  CAS  Google Scholar 

  • Lodge, D. 1993. Biological invasions, lessons from ecology. Trends Ecol. Evol. 8:133–137.

    Article  Google Scholar 

  • Mack, M. C., and D’antonio, C. M. 2003. Exotic grasses alter controls over soil nitrogen dynamics in a Hawaiian woodland. Ecol. Appl. 13:154–166.

    Article  Google Scholar 

  • Makkar H. P. S., and Goodchild A. V. 1996. Quantification of Tannins: A Laboratory Manual. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo.

  • Marigo, G. 1973. Sur une méthode de fractionnement et d’estimation de composes phénoliques chez les végétaux. Analusis 2:106–110.

    CAS  Google Scholar 

  • Mihaliak, C. A., Couvet, D., and Lincoln, D. E. 1987. Inhibition of feeding by a generalist insect due ti increased volatile leaf terpenes under nitrate-limiting conditions. J. Chem. Ecol. 13:2059–2067.

    Article  CAS  Google Scholar 

  • Mole, S., Rogler, J. C., Morell, J., and Butler, L. G. 1990. Herbivore growth reduction by tannins: use of waldbauer ratio techniques and manipulation of salivary protein production to elucidate mechanisms of action. Biochem. Syst. Evol. 18:183–197.

    Article  CAS  Google Scholar 

  • Mooney, H. A., and Hobbs, R. J. 2000. Invasive Species in a Changing World. Island Press. Washington. US. pp. 457.

  • Mote, T. E., Vullalba, J. J., and Provenza, F. D. 2007. Relative availability of Tannins- and terpene-containing foods affects food intake and preference by lambs. J. Chem. Ecol. 33:1197–1206.

    Article  CAS  PubMed  Google Scholar 

  • Müller-Dombois, D., and Fosberg, F. R. 1998. Vegetation of the tropical Pacific Islands. New York: Springer Verlag.

    Google Scholar 

  • Müller-Schärer, H., Schaffner, U., and Steiner, T. 2004. Evolution in invasive plants: implications for biological control. Trends Ecol. Evol. 19:417–422.

    Article  PubMed  Google Scholar 

  • Mutikainen, P., Walls, M., Ovaska, J., Kainenen, M., Julknen-Tiito, R., and Vapaavuori, E. 2000. Herbivore resistance in Betula pendula: Effect of fertilization, defoliation and plant genotype. Ecology 8:49–65.

    Google Scholar 

  • Nitao, J. K., Zangerl, A. R., and Berenbaum, M. R. 2002. CNB: requiescat in pace? Oikos 98:540–546.

    Article  CAS  Google Scholar 

  • Nomura, M., and Itioka, T. 2002. Effects of synthesized tannin on the growth and survival of a generalist herbivorous insect, the common cutworm, Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 37:285–289.

    Article  CAS  Google Scholar 

  • Normile, D. 2004. Expanding trade with China creates ecological backlash. Science 306:968–969.

    Article  CAS  PubMed  Google Scholar 

  • Pattison, R. R., Goldstein, G., and Ares, A. 1998. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117:449–459.

    Article  Google Scholar 

  • Peñuelas, J., Ribas-Carbó, M., and Giles, L. 1996. Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase. J. Chem. Ecol. 22:801–805.

    Article  Google Scholar 

  • Peñuelas, J., and Estiarte, M. 1998. Can elevated CO2 affect secondary metabolism and ecosystem functioning? Trends Ecol. Evol. 13:20–24.

    Article  Google Scholar 

  • Peñuelas J., and Llusià, J. 2003 BVOCs: Plant defense against climate warming? Trends Plant Sci. 8:105–109.

    Article  PubMed  Google Scholar 

  • Peñuelas J., and Llusià J. 2004. Plant VOC emissions: making use of the unavoidable. Trends Ecol. Evol. 19:402404.

    Article  PubMed  Google Scholar 

  • Peñuelas J., and Munné-Bosch, S. 2005. Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci. 10:166–169.

    Article  PubMed  Google Scholar 

  • Peñuelas, J., Sardans, J., Llusià, J., Owen, S., Carnicer, J., Giambelluca, T. W., Rezende, E. L., Waite, M., and Niinemets, Ü. 2010. Faster returns on ‘leaf economics’, greater nutrient capture and reduced climate sensitivity in invasive plant species. Global Change Biol. 16:2171–2185.

    Article  Google Scholar 

  • Peñuelas, J., and Staudt, M. 2010. BVOCs and global change. Trends Plant Sci. 15:133–144.

    Article  PubMed  Google Scholar 

  • Pheloung, P. C., Williams, P. A., and Halloy, S. R. P.. 1999. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J. Environ Manag. 57:239–251.

    Article  Google Scholar 

  • Porter, L. J., Hrstich, L.N., and Chang, B.G. 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin, Phytochemistry 25:223–230.

    Article  CAS  Google Scholar 

  • Reich, P. B., Walters, M. B., and Ellswoth, D. S. 1997. From tropics to Tundra: global convergence in plant functioning. Proc. Nat. Acad. Sci. USA 94:13730–13734.

    Article  CAS  PubMed  Google Scholar 

  • Sardans, J., Llusià, J., Niinemets, Ü., Owen, S., and Peñuelas J. 2010. Foliar Mono- and Sesquiterpene Contents in Relation to Leaf Economic Spectrum in Native and Alien Species in Oahu (Hawaii). J. Chem. Ecol. 36:210–226.

    Article  CAS  PubMed  Google Scholar 

  • Singleton, V. L., and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticulture 16:144–158.

    CAS  Google Scholar 

  • Smith, C. D. 1996. Impact of Alien Plant on Hawai’i’s Native Biota. University of Hawai’i. Botany Department.

  • Sorensen, J. S., Mclister, J. D., and Dearing, M. D. 2005. Novel plant secondary metabolites impact dietary specialists more than generalist (Neotoma sp.). Ecology 86:140–154.

    Article  Google Scholar 

  • Stastny, M., Schaffner, U., and Elle, E. 2005. Do vigour of introduced populations and escape from specialist herbivores contribute to invasiveness? J. Ecol. 93:27–37.

    Article  Google Scholar 

  • Uehara, G., and Ikawa. H. 2000. Use of information from soil surveys and classification. Plant nutrient management in Hawaii’s soils, approaches for tropical and subtropical agriculture. Honolulu: College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, 67–77.

  • Viiri, H., Annila, E., Kitunen, V., and Niemelä, P. 2001. Induced responses in stilbenes and terpenes in fertilized Norway spruce after inoculation with blue-stain fungus, Ceratocystis polonica. Trees 15:112–122.

    Article  CAS  Google Scholar 

  • Vitousek, P. M., and Walker, L. R. 1989. Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol. Monogr. 59:247–265.

    Article  Google Scholar 

  • Wagner, L. R., Herbst, D. R., and Sahmer, S. H. 1999. The Manual of Flowering Plants of Hawai’i (revised edition). University of Hawai’i Press, Honolulu, Hawaiì. pp 1919.

    Google Scholar 

  • Webb, C. O., and Donoghue, M. J. 2005. Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes 5:181–183.

    Article  Google Scholar 

  • Wright, D. M., Jordan, G. J., Lee, W. G., Duncan, R. P., Forsyth, D. M., and Coomes, D. A. 2010. Do leaves of plants on phosphorus-impoverished soils contain high concentrations of phenolic defence compounds? Funct. Ecol. 24:52–61.

    Google Scholar 

  • Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gullas, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M. L., Niinemets, Ü., Oleskyn, J., Osada, N., Poorter, H., Poot, P., Prior, P., Pyankov, V.I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Vaneklaas, E. J., and Villar, R. 2004. The worldwide leaf economic spectrum. Nature 428:821–827.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Theodore Garland Jr. for providing most of the statistical programs used for phylogenetic analyses. This research was supported by the University of Hawaii (G. P. Wilder research funds), and grants from the Spanish Government (CGL2006-04025/BOS, CGL2010-17172 and Consolider-Ingenio Montes CSD2008-00040), the Catalan Government (SGR 2009-458), the Estonian Ministry of Education and Science (grant SF1090065s07), the Spanish National Research council (CSIC-PIF08-006-3), and the Estonian Science Foundation (grant 7645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Peñuelas.

Appendix

Appendix

Table 1 Description of the study sites
Table 2 Family, plant growth form, sampling sites in Oahu, Hawaii, characteristic ecological distribution, continent of origin and invasiveness of all studied species
Table 3 Foliar contents of total phenolics (TP), total tannins (Tta) and total terpenes (TT) and their respective ratios relative to leaf N and P content for the studied native and alien species

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peñuelas, J., Sardans, J., Llusia, J. et al. Higher Allocation to Low Cost Chemical Defenses in Invasive Species of Hawaii. J Chem Ecol 36, 1255–1270 (2010). https://doi.org/10.1007/s10886-010-9862-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9862-7

Key Words

Navigation