Skip to main content
Log in

Preparation of mesoporous carbon materials used in electrochemical capacitor electrode by using natural zeolite template/maltose system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mesoporous carbons (NZMC) were synthesized by using single-step nanocasting in which maltose was used as carbon precursors and natural zeolite as template. Physical property characterization methods such as field emission scanning electron microscopy, transmission electron microscopy, N2 absorption/desorption, and X-ray diffraction were employed to determine the structure and crystallinity of NZMC. The results show that the materials possess a disordered lamellar structure and numerous nanopores. The specific surface area and pore volume reach up to 1076.9 m2/g and 1.46 cm3/g, respectively. Typical electrochemical measurements such as constant current charge/discharge test, cyclic voltammetry (CV), and electrochemical impedance spectra revealed that NZMC has excellent charge storage capability. Specific capacitance is 176 F/g in the alkaline media when the current density is 600 mA/g. The CV curve maintains a typical CV quasi-rectangular feature at a scan rate of 5–100 mV/s, which indicates that the materials perform well rate capability. The combination resistance of the carbon materials is 0.78 Ω. After 750 cycles, the specific capacitance retention value is 94.5 %, which proves that NZMC is a promising electrode material for electrochemical capacitors because of its long-term cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332, 1537 (2011)

    Article  Google Scholar 

  2. J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328, 480 (2010)

    Article  Google Scholar 

  3. C. Galeano, J.C. Meier, V. Peinecke, H. Bongard, I. Katsounaros, A.A. Topalov, A.H. Lu, K.J. Mayrhofer, F.J. Schüth, Am. Chem. Soc. 134, 20457 (2012)

    Article  Google Scholar 

  4. K. Fic, E. Frackowiak, F. Béguin, J. Mater. Chem. 22, 24213 (2012)

    Article  Google Scholar 

  5. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326 (2012)

    Article  Google Scholar 

  6. J.T. Zhang, X.S. Zhao, Chem. Sus. Chem. 5, 818 (2012)

    Article  Google Scholar 

  7. Z.S. Wu, Y. Sun, Y.Z. Tan, S.B. Yang, X.L. Feng, K. Müllen, J. Am. Chem. Soc. 134, 19532 (2012)

    Article  Google Scholar 

  8. P. Simon, Y. Gogotsi, Acc. Chem. Res. 46, 1094 (2013)

    Article  Google Scholar 

  9. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009)

    Article  Google Scholar 

  10. Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828 (2011)

    Article  Google Scholar 

  11. Z.W. Xu, Z. Li, M.B. Holt, X.H. Tan, H.L. Wang, B.S. Amirkhiz, T. Stephenson, D. Mitlin, J. Phys. Chem. Lett. 3, 2928 (2012)

    Article  Google Scholar 

  12. S.B. Yang, R.E. Bachman, X.L. Feng, K. Müllen, Acc. Chem. Res. 46, 116 (2013)

    Article  Google Scholar 

  13. Y.D. Xia, Z.X. Yang, X.L. Gou, Y.Q. Zhu, Int. J. Hydrogen Energy 38, 5039 (2013)

    Article  Google Scholar 

  14. Q.L. Cheng, Y.M. Xia, V. Pavlinek, Y.F. Yan, C.Z. Li, P. Saha, J. Mater. Sci. 47, 6444 (2012)

    Article  Google Scholar 

  15. L. Borchardt, M. Oschatz, M. Lohe, V. Presserb, Y. Gogotsib, S. Kaskel, Carbon 50, 3987 (2012)

    Article  Google Scholar 

  16. N. Brun, R.S. Prabaharan, C. Surcin, M. Morcrette, H. Deleuze, M. Birot, O. Babot, M.F. Achard, R. Backov, J. Phys. Chem. C 116, 1408 (2012)

    Article  Google Scholar 

  17. N.P. Stadie, M. Murialdo, C.C. Ahn, B. Fultz, J. Am. Chem. Soc. 135, 990 (2013)

    Article  Google Scholar 

  18. Z.A. Qiao, B.K. Guo, A.J. Binder, J.H. Chen, G.M. Veith, S. Dai, Nano Lett. 13, 207 (2013)

    Article  Google Scholar 

  19. E. Masika, R. Mokaya, J. Phys. Chem. C 116, 25734 (2012)

    Article  Google Scholar 

  20. W.X. Chen, H. Zhang, Y.Q. Huang, W.K. Wang, J. Mater. Chem. 20, 4773 (2010)

    Article  Google Scholar 

  21. B.Z. Fang, J.H. Kim, M.S. Kim, A. Bonakdarpour, A. Lam, D.P. Wilkinson, J.S. Yu, J. Mater. Chem. 22, 19031 (2012)

    Article  Google Scholar 

  22. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, ACS Nano 4, 1337 (2010)

    Article  Google Scholar 

  23. H.Y. Liu, K.P. Wang, H. Teng, Carbon 43, 559 (2005)

    Article  Google Scholar 

  24. T. Maiyalagan, B.A. Nassr, T.O. Alaje, M. Bron, K. Scott, J. Power Sources 211, 147 (2012)

    Article  Google Scholar 

  25. C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, F. Béguin, Adv. Funct. Mater. 17, 1828 (2007)

    Article  Google Scholar 

  26. H. Nishihara, Q.H. Yang, P.X. Hou, M. Unno, S. Yamauchi, R. Saito, J.I. Paredes, A. Martínez-Alonso, J.D. Tascón, Y. Sato, M. Terauchi, T. Kyotani, Carbon 47, 1220 (2009)

    Article  Google Scholar 

  27. C.J. Meyers, S.D. Shah, S.C. Patel, R.M. Sneeringer, C.A. Bessel, N.R. Dollahon, R.A. Leising, E.S. Takeuchi, J. Phys. Chem. B 105, 2143 (2001)

    Article  Google Scholar 

  28. W.F. Zhang, Z.H. Huang, C.J. Zhou, G.P. Cao, F.Y. Kang, Y.S. Yang, J. Mater. Chem. 22, 7158 (2012)

    Article  Google Scholar 

  29. T. Morishita, T. Tsumura, M. Toyoda, J. Przepiórskic, A.W. Morawskic, H. Konnod, M. Inagakie, Carbon 48, 2690 (2010)

    Article  Google Scholar 

  30. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 47, 373 (2008)

    Article  Google Scholar 

  31. B. Sakintuna, Y. Yürüm, Microporous Mesoporous Mater. 93, 304 (2006)

    Article  Google Scholar 

  32. A.P. Wang, F.Y. Kang, Z.H. Huang, New Carbon Mater. 22, 141 (2007)

    Google Scholar 

  33. G.Y. Liu, J.M. Guo, B.S. Wang, J. Funct. Mater. 41, 2143 (2010)

    Google Scholar 

  34. H.M. Luo, P. Yang, F.B. Zhang, J. Mater. Sci.: Mater. Electron. 24, 586 (2013)

    Google Scholar 

  35. X.Y. Zhang, X.Y. Wang, J.C. Su, X.Y. Wang, L.L. Jiang, H. Wu, C. Wu, J. Power Sources 199, 402 (2012)

    Article  Google Scholar 

  36. J.W. Lang, L.B. Kong, M. Liu, Y.C. Luo, L. Kang, J. Solid State Electrochem. 14, 1533 (2010)

    Article  Google Scholar 

  37. J. Mi, X.R. Wang, R.J. Fan, W.H. Qu, W.C. Li, Energy Fuels 26, 5321 (2012)

    Article  Google Scholar 

  38. Z. Gao, W.L. Yang, J. Wang, B. Wang, Z.S. Li, Q. Liu, M.L. Zhang, Energy Fuels 27, 568 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (NSFC.51063003) and the College Students Training Project for Creative and Entrepreneurship of China (No. 1210731150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixia Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, H., Zhang, F., Zhao, X. et al. Preparation of mesoporous carbon materials used in electrochemical capacitor electrode by using natural zeolite template/maltose system. J Mater Sci: Mater Electron 25, 538–545 (2014). https://doi.org/10.1007/s10854-013-1621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1621-4

Keywords

Navigation