Skip to main content

Advertisement

Log in

Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, stabilized Al-substituted α-Ni(OH)2 materials were successfully synthesized by a chemical coprecipitation method. The experimental results showed that the 7.5% Al-substituted α-Ni(OH)2 materials exhibited high specific capacitance (2.08 × 103 F/g) and excellent rate capability due to the high stability of Al-substituted α-Ni(OH)2 structures in alkaline media, suggesting its potential application in electrode material for supercapacitors. To enhance energy density, an asymmetric type pseudo/electric double-layer capacitor was considered where α-Ni(OH)2 materials and activated carbon act as the positive and negative electrodes, respectively. Values for the maximum specific capacitance of 127 F/g and specific energy of 42 W·h/kg were demonstrated for a cell voltage between 0.4 and 1.6 V. By using the α-Ni(OH)2 electrode, the asymmetric supercapacitor exhibited high energy density and stable power characteristics. The hybrid supercapacitor also exhibited a good electrochemical stability with 82% of the initial capacitance over consecutive 1,000 cycle numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184

    Article  CAS  Google Scholar 

  2. Conway BE (1991) J Electrochem Soc 138:1539

    Article  CAS  Google Scholar 

  3. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    Article  CAS  Google Scholar 

  4. Park JH, Kim S, Park OO, Ko JM (2006) Appl Phys A 82:593

    Article  CAS  Google Scholar 

  5. Brousse T, Taberna PL, Crosnier O, Dugas R, Guillemet P, Scudeller Y, Zhou Y, Favier F, Bélanger D, Simon P (2007) J Power Sources 173:633

    Article  CAS  Google Scholar 

  6. Khomenko V, Raymundo-piñero E, Frackowiak E, Béguin F (2006) Appl Phys A 82:567

    Article  CAS  Google Scholar 

  7. Yuan CZ, Gao B, Zhang XG (2007) J Power Sources 173:606

    Article  CAS  Google Scholar 

  8. Yoon JH, Bang HJ, Prakash J, Sun YK (2008) Mater Chem Phys 110:222

    Article  CAS  Google Scholar 

  9. Xue Y, Chen Y, Zhang ML, Yan YD (2008) Mater Lett 62:3884

    Article  CAS  Google Scholar 

  10. An KH, Kim WS (2001) Adv Funct Mater 11:387

    Article  CAS  Google Scholar 

  11. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem Int Ed 47:373

    Article  CAS  Google Scholar 

  12. Cao L, Xu F, Liang YY, Li HL (2004) Adv Mater 16:1853

    Article  CAS  Google Scholar 

  13. Ke YF, Tsai DS, Huang YS (2005) J Mater Chem 15:2122

    Article  CAS  Google Scholar 

  14. Kong LB, Zhang J, An JJ, Luo YC, Kang L (2008) J Mater Sci 43:3664

    Article  CAS  Google Scholar 

  15. Zhang J, Kong LB, Wang B, Luo YC, Kang L (2009) Synth Met 159:260

    Article  CAS  Google Scholar 

  16. Huggins RA (2000) Solid State Ion 134:179

    Article  CAS  Google Scholar 

  17. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  18. Cottineau T, Toupin M, Delahaye T, Brousse T, Bélanger D (2006) Appl Phys A 82:599

    Article  CAS  Google Scholar 

  19. Wang XF, You Z, Yuan DB (2006) Chin J Chem 24:1126

    Article  CAS  Google Scholar 

  20. Palmas S, Ferrara F, Vacca A, Mascia M, Polcaro AM (2007) Electrochim Acta 53:400

    Article  CAS  Google Scholar 

  21. Kong LB, Lang JW, Liu M, Luo YC, Kang L (2009) J Power Sources 194:1194

    Article  CAS  Google Scholar 

  22. Srinivasan V, Weidner JW (1997) J Electrochem Soc 144:L210

    Article  CAS  Google Scholar 

  23. Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2009) J Mater Sci 44:4466

    Article  CAS  Google Scholar 

  24. Song QS, Li YY, Lchan SL (2005) J Appl Electrochem 35:157

    Article  CAS  Google Scholar 

  25. Cheng J, Cao GP, Yang YS (2006) J Power Sources 159:734

    Article  CAS  Google Scholar 

  26. Jayashree RS, Kamath PV (2001) J Appl Electrochem 31:1315

    Article  CAS  Google Scholar 

  27. Yang GW, Xu CL, Li HL (2008) Chem Commun 48:6537

    Article  Google Scholar 

  28. Kamath PV, Dixit M, Indira L, Shukla AK, Kumar VG, Munichandraiah N (1994) J Electrochem Soc 141:2956

    Article  CAS  Google Scholar 

  29. Lang JW, Kong LB, Wu WJ, Liu M, Luo YC, Kang L (2009) J Solid State Electrochem 13:333

    Article  CAS  Google Scholar 

  30. Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2008) Chem Commun 35:4213

    Article  Google Scholar 

  31. Cao L, Lu M, Li HL (2005) J Electrochem Soc 152:A871

    Article  CAS  Google Scholar 

  32. Wang XF, Ruan DB, You Z (2006) Trans Nonferrous Met Soc China 16:1129

    Article  CAS  Google Scholar 

  33. Li YM, Li WY, Chou SL, Chen J (2008) J Alloys Compd 456:339

    Article  CAS  Google Scholar 

  34. Kötz R, Carlen M (2000) Electrochim Acta 45:2483

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 50602020) and the National Basic Research Program of China (no. 2007CB216408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, JW., Kong, LB., Liu, M. et al. Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J Solid State Electrochem 14, 1533–1539 (2010). https://doi.org/10.1007/s10008-009-0984-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0984-1

Keywords

Navigation