Skip to main content
Log in

Effects of macropore size on structural and electrochemical properties of hierarchical porous carbons

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchical porous carbons (HPCs) were synthesized by a colloid crystal template method with phenolic resin as carbon source and triblock copolymer Pluronic F127 as a soft template. The obtained HPCs with tunable macropore size of 242–420 nm exhibit large BET surface areas (~900 m2 g−1) and large pore volumes (~1.2 cm3 g−1). With an increase in the diameters of silica template, the BET surface areas and pore volumes of HPCs decrease. The electrochemical properties of the HPCs with various macropore sizes used as supercapacitor electrodes materials were evaluated using cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. The results show the HPC with the macropore size of 242 nm possesses the largest specific capacitance among the HPCs. The excellent capacitive behavior of HPC-242 can be attributed to its faster ion transport behavior and better ion-accessible surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Song C, Du JP, Zhao JH, Feng SA, Du GX, Zhu ZP (2009) Chem Mater 21:1524

    Article  CAS  Google Scholar 

  2. Shen WZ, Zhang SC, He Y, Li JF, Fan WB (2011) J Mater Chem 21:14036

    Article  CAS  Google Scholar 

  3. Goldberg M, Landger R, Jia XQ (2007) J Biomater Sci Polym Ed 18:241

    Article  CAS  Google Scholar 

  4. Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Adv Funct Mater 15:547

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  CAS  Google Scholar 

  6. Li LX, Song HH, Zhang QC, Yao JY, Chen XH (2009) J Power Sources 187:268

    Article  CAS  Google Scholar 

  7. Ko JM, Song RY, Yu HJ, Yoon JW, Min BG, Kim DW (2004) Electrochim Acta 50:873

    Article  CAS  Google Scholar 

  8. Tamai H, Hakoda M, Shiono T, Yasuda H (2007) J Mater Sci 42:1293. doi:10.1007/s10853-006-1059-7

    Article  CAS  Google Scholar 

  9. Yang S, Kim IJ, Jeon MJ, Kim K, Moon SI, Kim HS, An KH (2008) J Ind Eng Chem 14:365

    Article  CAS  Google Scholar 

  10. Nam HS, Kwon JS, Kim KM, Ko JM, Kim JD (2010) Electrochim Acta 55:7443

    Article  CAS  Google Scholar 

  11. Wang DW, Li F, Fang HT, Liu M, Lu GQ, Cheng HM (2006) J Phys Chem B 110:8570

    Article  CAS  Google Scholar 

  12. Rolison DR (2003) Science 299:1698

    Article  CAS  Google Scholar 

  13. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Carbon 44:216

    Article  CAS  Google Scholar 

  14. Morishita T, Soneda Y, Tsumura T, Inagaki M (2006) Carbon 44:2360

    Article  CAS  Google Scholar 

  15. Filho CA, Zarbin AJ (2006) Carbon 44:2869

    Article  Google Scholar 

  16. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem 120:379

    Article  Google Scholar 

  17. Fang BZ, Kim M, Kim JH, Yu JS (2008) Langmuir 24:12068

    Article  CAS  Google Scholar 

  18. Zhao Y, Zheng MB, Cao JM, Ke XF, Liu JS, Chen YP, Tao J (2008) Mater Lett 62:548

    Article  CAS  Google Scholar 

  19. Zarbin AJ, Bertholdo R, Oliveira MA (2002) Carbon 40:2413

    Article  CAS  Google Scholar 

  20. Deng YH, Liu C, Yu T, Liu F, Zhang FQ, Wan Y, Zhang LJ, Wang CC, Tu B, Webley P, Wang HT, Zhao DY (2007) Chem Mater 19:3271

    Article  CAS  Google Scholar 

  21. Zeng QC, Wu DC, Zou C, Xu F, Fu RW, Li ZH, Liang Y, Su DS (2010) Chem Commun 46:5927

    Article  CAS  Google Scholar 

  22. Tuinsta F, Koenig J (1970) J Chem Phys 53:1126

    Article  Google Scholar 

  23. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Carbon 43:1731

    Article  CAS  Google Scholar 

  24. Zhao JZ, Cheng FY, Yi CH, Liang J, Tao ZL, Chen J (2009) J Mater Chem 19:4108

    Article  CAS  Google Scholar 

  25. Xing W, Huang CC, Zhuo SP, Yuan X, Wang GQ, Jurcakova DH, Yan ZF, Lu GQ (2006) Carbon 44:216

    Article  CAS  Google Scholar 

  26. Qu DY, Shi H (1998) J Power Sources 74:99

    Article  CAS  Google Scholar 

  27. Wang YG, Li HQ, Xia YY (2006) Adv Mater 18:2619

    Article  CAS  Google Scholar 

  28. Sun GW, Wang JT, Liu XJ, Long DH, Qiao WM, Ling LC (2010) J Phys Chem C 114:18745

    Article  CAS  Google Scholar 

  29. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) J Phys Chem B 109:7330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (20925621), the Special Projects for Nanotechnology of Shanghai (1052nm02300, 11nm0500800, 11nm0500200), the Fundamental Research Funds for the Central Universities, the Program of Shanghai Subject Chief Scientist (08XD1401500), the Shanghai Shuguang Scholars Program (10SG31), the Special Projects for Key Laboratories in Shanghai (10DZ2211100) and the project-sponsored by SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilin Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Q., Xia, Y., Pavlinek, V. et al. Effects of macropore size on structural and electrochemical properties of hierarchical porous carbons. J Mater Sci 47, 6444–6450 (2012). https://doi.org/10.1007/s10853-012-6576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6576-y

Keywords

Navigation