Skip to main content

Advertisement

Log in

A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Humans, in contrast to other mammals, do not synthesize N-glycolyl-neuraminic acid (Neu5Gc) due to a deletion in the gene (cmah) encoding the enzyme responsible for this conversion, the cytidine monophospho-N-acetyl-neuraminic acid hydroxylase (CMP-Neu5Ac hydroxylase). The detection of considerable amounts of Neu5Gc-sialoconjugates, in particular gangliosides, in human malignancies makes these antigens attractive targets for immunotherapy, in particular with monoclonal antibodies (mAbs). We have previously described a GM3(Neu5Gc) ganglioside-specific mAb, named 14F7, with the ability to kill tumor cells in a complement-independent manner. Silencing the cmah gene in GM3(Neu5Gc)-expressing L1210 mouse lymphocytic leukemia B cells caused the abrogation of this cytotoxic effect. We now show that cmah-silenced L1210 cells (cmah-kd) express a high level of GM3(Neu5Ac) and have an impaired ability for anchorage-independent cell growth and tumor development in vivo. No evidences of increased immunogenicity of the cmah-kd cell line were found. These results provide new evidences on the role of GM3(Neu5Gc), or Neu5Gc-sialoconjugates in general, in tumor biology. As an important tool in this study, we used the humanized version (here referred to as 7C1 mAb) of a recently described, rationally-designed mutant of 14F7 mAb that is able to bind to both GM3(Neu5Gc) and GM3(Neu5Ac). In contrast to its parental antibody, the humanized 14F7 (14F7hT) mAb, 7C1 mAb was able to kill not only GM3(Neu5Gc)-expressing L1210 wild type cells, but also GM3(Neu5Ac)-expressing cmah-kd cells, which endorses this antibody as a potential agent for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hakomori, S.: Structure, organization, and function of glycosphingolipids in membrane. Curr. Opin. Hematol. 10(1), 16–24 (2003)

    Article  PubMed  CAS  Google Scholar 

  2. Lopez, P.H., Schnaar, R.L.: Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol. 19(5), 549–557 (2009). doi:10.1016/j.sbi.2009.06.001

    Article  PubMed  CAS  Google Scholar 

  3. Sonnino, S., Mauri, L., Chigorno, V., Prinetti, A.: Gangliosides as components of lipid membrane domains. Glycobiology 17(1), 1R–13R (2007). doi:10.1093/glycob/cwl052

    Article  PubMed  CAS  Google Scholar 

  4. Sonnino, S., Prinetti, A.: Lipids and membrane lateral organization. Front. Physiol. 1, 153 (2010). doi:10.3389/fphys.2010.00153

    Article  PubMed  CAS  Google Scholar 

  5. Cantu, L., Del Favero, E., Sonnino, S., Prinetti, A.: Gangliosides and the multiscale modulation of membrane structure. Chem. Phys. Lipids 164(8), 796–810 (2011). doi:10.1016/j.chemphyslip.2011.09.005

    Article  PubMed  CAS  Google Scholar 

  6. Hakomori, S.: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56(23), 5309–5318 (1996)

    PubMed  CAS  Google Scholar 

  7. Prinetti, A., Prioni, S., Loberto, N., Aureli, M., Nocco, V., Illuzzi, G., Mauri, L., Valsecchi, M., Chigorno, V., Sonnino, S.: Aberrant glycosphingolipid expression and membrane organization in tumor cells: consequences on tumor-host interactions. Adv. Exp. Med. Biol. 705, 643–667 (2011). doi:10.1007/978-1-4419-7877-6_34

    Article  PubMed  CAS  Google Scholar 

  8. Durrant, L.G., Noble, P., Spendlove, I.: Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy. Clin. Exp. Immunol. 167(2), 206–215 (2012). doi:10.1111/j.1365-2249.2011.04516.x

    Article  PubMed  CAS  Google Scholar 

  9. Rabu, C., McIntosh, R., Jurasova, Z., Durrant, L.: Glycans as targets for therapeutic antitumor antibodies. Future Oncol. 8(8), 943–960 (2012). doi:10.2217/fon.12.88

    Article  PubMed  CAS  Google Scholar 

  10. Higashi, H., Hirabayashi, Y., Fukui, Y., Naiki, M., Matsumoto, M., Ueda, S., Kato, S.: Characterization of N-glycolylneuraminic acid-containing gangliosides as tumor-associated Hanganutziu-Deicher antigen in human colon cancer. Cancer Res. 45(8), 3796–3802 (1985)

    PubMed  CAS  Google Scholar 

  11. Marquina, G., Waki, H., Fernandez, L.E., Kon, K., Carr, A., Valiente, O., Perez, R., Ando, S.: Gangliosides expressed in human breast cancer. Cancer Res. 56(22), 5165–5171 (1996)

    PubMed  CAS  Google Scholar 

  12. Varki, A.: Multiple changes in sialic acid biology during human evolution. Glycoconj. J. 26(3), 231–245 (2009). doi:10.1007/s10719-008-9183-z

    Article  PubMed  CAS  Google Scholar 

  13. Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T., Suzuki, A.: The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 273(25), 15866–15871 (1998)

    Article  PubMed  CAS  Google Scholar 

  14. Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A., Muchmore, E.: Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. U. S. A. 100(21), 12045–12050 (2003). doi:10.1073/pnas.2131556100

    Article  PubMed  CAS  Google Scholar 

  15. Bardor, M., Nguyen, D.H., Diaz, S., Varki, A.: Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J. Biol. Chem. 280(6), 4228–4237 (2005). doi:10.1074/jbc.M412040200

    Article  PubMed  CAS  Google Scholar 

  16. Banda, K., Gregg, C.J., Chow, R., Varki, N.M., Varki, A.: Metabolism of vertebrate amino sugars with N-glycolyl groups: mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid. J. Biol. Chem. 287(34), 28852–28864 (2012). doi:10.1074/jbc.M112.364182

    Article  PubMed  CAS  Google Scholar 

  17. Hedlund, M., Tangvoranuntakul, P., Takematsu, H., Long, J.M., Housley, G.D., Kozutsumi, Y., Suzuki, A., Wynshaw-Boris, A., Ryan, A.F., Gallo, R.L., Varki, N., Varki, A.: N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol. Cell. Biol. 27(12), 4340–4346 (2007). doi:10.1128/MCB.00379-07

    Article  PubMed  CAS  Google Scholar 

  18. Yin, J., Hashimoto, A., Izawa, M., Miyazaki, K., Chen, G.Y., Takematsu, H., Kozutsumi, Y., Suzuki, A., Furuhata, K., Cheng, F.L., Lin, C.H., Sato, C., Kitajima, K., Kannagi, R.: Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res. 66(6), 2937–2945 (2006). doi:10.1158/0008-5472.CAN-05-2615

    Article  PubMed  CAS  Google Scholar 

  19. Yin, J., Miyazaki, K., Shaner, R.L., Merrill Jr., A.H., Kannagi, R.: Altered sphingolipid metabolism induced by tumor hypoxia—new vistas in glycolipid tumor markers. FEBS Lett. 584(9), 1872–1878 (2010). doi:10.1016/j.febslet.2009.11.019

    Article  PubMed  CAS  Google Scholar 

  20. Carr, A., Mullet, A., Mazorra, Z., Vazquez, A.M., Alfonso, M., Mesa, C., Rengifo, E., Perez, R., Fernandez, L.E.: A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors. Hybridoma 19(3), 241–247 (2000). doi:10.1089/02724570050109639

    Article  PubMed  CAS  Google Scholar 

  21. Oliva, J.P., Valdes, Z., Casaco, A., Pimentel, G., Gonzalez, J., Alvarez, I., Osorio, M., Velazco, M., Figueroa, M., Ortiz, R., Escobar, X., Orozco, M., Cruz, J., Franco, S., Diaz, M., Roque, L., Carr, A., Vazquez, A.M., Mateos, C., Rubio, M.C., Perez, R., Fernandez, L.E.: Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with (99 m)Tc. Breast Cancer Res. Treat. 96(2), 115–121 (2006). doi:10.1007/s10549-005-9064-0

    Article  PubMed  CAS  Google Scholar 

  22. Fernandez-Marrero, Y., Roque-Navarro, L., Hernandez, T., Dorvignit, D., Molina-Perez, M., Gonzalez, A., Sosa, K., Lopez-Requena, A., Perez, R., Mateo de Acosta, C.: A cytotoxic humanized anti-ganglioside antibody produced in a murine cell line defective of N-glycolylated-glycoconjugates. Immunobiology (2011). doi: 10.1016/j.imbio.2011.07.004

  23. Osorio, M., Gracia, E., Rodriguez, E., Saurez, G., Arango Mdel, C., Noris, E., Torriella, A., Joan, A., Gomez, E., Anasagasti, L., Gonzalez, J.L., Melgares Mde, L., Torres, I., Gonzalez, J., Alonso, D., Rengifo, E., Carr, A., Perez, R., Fernandez, L.E.: Heterophilic NeuGcGM3 ganglioside cancer vaccine in advanced melanoma patients: results of a Phase Ib/IIa study. Cancer Biol. Ther. 7(4), 488–495 (2008)

    Article  PubMed  CAS  Google Scholar 

  24. Blanco, R., Rengifo, E., Rengifo, C.E., Cedeno, M., Frometa, M., Carr, A.: Immunohistochemical reactivity of the 14F7 monoclonal antibody raised against N-glycolyl GM3 ganglioside in some benign and malignant skin neoplasms. ISRN Dermatol. 2011, 848909 (2011). doi:10.5402/2011/848909

    PubMed  Google Scholar 

  25. Zhong, Y., Wu, Y., Li, C., Tang, J., Wang, X., Ren, G., Carr, A., Perez, R., Guo, W.: N-Glycolyl GM3 ganglioside immunoexpression in oral mucosal melanomas of Chinese. Oral Dis. 18(8), 741–747 (2012). doi:10.1111/j.1601-0825.2012.01939.x

    Article  PubMed  CAS  Google Scholar 

  26. van Cruijsen, H., Ruiz, M.G., van der Valk, P., de Gruijl, T.D., Giaccone, G.: Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer 9, 180 (2009). doi:10.1186/1471-2407-9-180

    Article  PubMed  Google Scholar 

  27. Blanco, R., Rengifo, C.E., Cedeno, M., Frometa, M., Rengifo, E., Carr, A.: Immunoreactivity of the 14F7 mab (raised against N-glycolyl GM3 ganglioside) as a positive prognostic factor in non-small-cell lung cancer. Patholog. Res. Int. 2012, 235418 (2012). doi:10.1155/2012/235418

    PubMed  Google Scholar 

  28. Hayashi, N., Chiba, H., Kuronuma, K., Go, S., Hasegawa, Y., Takahashi, M., Gasa, S., Watanabe, A., Hasegawa, T., Kuroki, Y., Inokuchi, J., Takahashi, H.: Detection of N-glycolyated gangliosides in non-small-cell lung cancer using GMR8 monoclonal antibody. Cancer Sci. 104(1), 43–47 (2013). doi:10.1111/cas.12027

    Article  PubMed  CAS  Google Scholar 

  29. Scursoni, A.M., Galluzzo, L., Camarero, S., Pozzo, N., Gabri, M.R., de Acosta, C.M., Vazquez, A.M., Alonso, D.F., de Davila, M.T.: Detection and characterization of N-glycolyated gangliosides in Wilms tumor by immunohistochemistry. Pediatr. Dev. Pathol. 13(1), 18–23 (2010). doi:10.2350/08-10-0544.1

    Article  PubMed  Google Scholar 

  30. Scursoni, A.M., Galluzzo, L., Camarero, S., Lopez, J., Lubieniecki, F., Sampor, C., Segatori, V.I., Gabri, M.R., Alonso, D.F., Chantada, G., de Davila, M.T.: Detection of N-glycolyl GM3 ganglioside in neuroectodermal tumors by immunohistochemistry: an attractive vaccine target for aggressive pediatric cancer. Clin. Dev. Immunol. 2011, 245181 (2011). doi:10.1155/2011/245181

    Article  PubMed  Google Scholar 

  31. Sampor, C., Guthmann, M.D., Scursoni, A., Cacciavillano, W., Torbidoni, A., Galluzzo, L., Camarero, S., Lopez, J., de Davila, M.T., Fainboim, L., Chantada, G.L.: Immune response to racotumomab in a child with relapsed neuroblastoma. Front. Oncol. 2, 195 (2012). doi:10.3389/fonc.2012.00195

    Article  PubMed  CAS  Google Scholar 

  32. Blanco, R., Quintana, Y., Blanco, D., Cedeño, M., Rengifo, C.E., Frómeta, M., Ríos, M., Rengifo, E., Carr, A.: Tissue reactivity of the 14F7 mab raised against N-Glycolyl GM3 ganglioside in tumors of neuroectodermal, mesodermal, and epithelial origin. J. Biomarkers 2013, 602417 (2013). doi:10.1155/2013/602417

    Google Scholar 

  33. Blanco, R., Rengifo, E., Cedeno, M., Rengifo, C.E., Alonso, D.F., Carr, A.: Immunoreactivity of the 14F7 mab raised against N-glycolyl GM3 ganglioside in epithelial malignant tumors from digestive system. ISRN Gastroenterol. 2011, 645641 (2011). doi:10.5402/2011/645641

    PubMed  Google Scholar 

  34. Blanco, R., Cedeño, M., Escobar, X., Blanco, D., Rengifo, C.E., Frómeta, M., Alvarez, R.I., Rengifo, E., Carr, A.: Immunorecognition of the 14F7 mab raised against N-glycolyl GM3 ganglioside in some normal and malignant tissues from genitourinary system. ISRN Pathology 2011, 953803 (2011). doi:10.5402/2011/953803

    Article  Google Scholar 

  35. Fernandez, L.E., Gabri, M.R., Guthmann, M.D., Gomez, R.E., Gold, S., Fainboim, L., Gomez, D.E., Alonso, D.F.: NGcGM3 ganglioside: a privileged target for cancer vaccines. Clin. Dev. Immunol. 2010, 814397 (2010). doi:10.1155/2010/814397

    Article  PubMed  Google Scholar 

  36. Carr, A., Rodriguez, E., Arango Mdel, C., Camacho, R., Osorio, M., Gabri, M., Carrillo, G., Valdes, Z., Bebelagua, Y., Perez, R., Fernandez, L.E.: Immunotherapy of advanced breast cancer with a heterophilic ganglioside (NeuGcGM3) cancer vaccine. J. Clin. Oncol. 21(6), 1015–1021 (2003)

    Article  PubMed  CAS  Google Scholar 

  37. Mulens, V., de la Torre, A., Marinello, P., Rodriguez, R., Cardoso, J., Diaz, R., O’Farrill, M., Macias, A., Viada, C., Saurez, G., Carr, A., Crombet, T., Mazorra, Z., Perez, R., Fernandez, L.E.: Immunogenicity and safety of a NeuGcGM3 based cancer vaccine: results from a controlled study in metastatic breast cancer patients. Hum. Vaccin. 6(9) (2010). doi:10.4161.hv.6.9.12571

  38. Perez, K., Osorio, M., Hernandez, J., Carr, A., Fernandez, L.E.: NGcGM3/VSSP vaccine as treatment for melanoma patients. Hum. Vaccin. Immunother. 9(6) (2013)

  39. Vazquez, A.M., Hernandez, A.M., Macias, A., Montero, E., Gomez, D.E., Alonso, D.F., Gabri, M.R., Gomez, R.E.: Racotumomab: an anti-idiotype vaccine related to N-glycolyl-containing gangliosides—preclinical and clinical data. Front. Oncol. 2, 150 (2012). doi:10.3389/fonc.2012.00150

    PubMed  Google Scholar 

  40. Vazquez, A.M., Alfonso, M., Lanne, B., Karlsson, K.A., Carr, A., Barroso, O., Fernandez, L.E., Rengifo, E., Lanio, M.E., Alvarez, C., et al.: Generation of a murine monoclonal antibody specific for N-glycolylneuraminic acid-containing gangliosides that also recognizes sulfated glycolipids. Hybridoma 14(6), 551–556 (1995)

    Article  PubMed  CAS  Google Scholar 

  41. Carr, A., Mesa, C., del Carmen Arango, M., Vazquez, A.M., Fernandez, L.E.: In vivo and in vitro anti-tumor effect of 14F7 monoclonal antibody. Hybrid Hybridomics 21(6), 463–468 (2002). doi:10.1089/153685902321043990

    Article  PubMed  CAS  Google Scholar 

  42. Roque-Navarro, L., Chakrabandhu, K., de Leon, J., Rodriguez, S., Toledo, C., Carr, A., de Acosta, C.M., Hueber, A.O., Perez, R.: Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity. Mol. Cancer Ther. 7(7), 2033–2041 (2008). doi:10.1158/1535-7163.MCT-08-0222

    Article  PubMed  CAS  Google Scholar 

  43. Mateo, C., Lombardero, J., Moreno, E., Morales, A., Bombino, G., Coloma, J., Wims, L., Morrison, S.L., Perez, R.: Removal of amphipathic epitopes from genetically engineered antibodies: production of modified immunoglobulins with reduced immunogenicity. Hybridoma 19(6), 463–471 (2000). doi:10.1089/027245700750053959

    Article  PubMed  CAS  Google Scholar 

  44. Fernandez-Marrero, Y., Lopez-Requena, A.: Lonely killers: Effector cell- and complement-independent non-proapoptotic cytotoxic antibodies inducing membrane lesions. MAbs 3(6), 528–534 (2011). doi:10.4161/mabs.3.6.17770

    Article  PubMed  Google Scholar 

  45. Fernandez-Marrero, Y., Hernandez, T., Roque-Navarro, L., Talavera, A., Moreno, E., Grinan, T., Vazquez, A.M., de Acosta, C.M., Perez, R., Lopez-Requena, A.: Switching on cytotoxicity by a single mutation at the heavy chain variable region of an anti-ganglioside antibody. Mol. Immunol. 48(8), 1059–1067 (2011). doi:10.1016/j.molimm.2011.01.008

    Article  PubMed  CAS  Google Scholar 

  46. Rojas, G., Pupo, A., Gomez, S., Krengel, U., Moreno, E.: Engineering the binding site of an antibody against N-glycolyl GM3: from functional mapping to novel anti-ganglioside specificities. ACS Chem. Biol. 8(2), 376–386 (2013). doi:10.1021/cb3003754

    Article  PubMed  CAS  Google Scholar 

  47. Vazquez, A.M., Tormo, B., Velandia, A., Giscombe, R., Ansotegui, I., Jeddi-Tehrani, M., Perez, R., Mellstedt, H., Biberfeld, P.: Characterization of the colorectal antigen IOR-C2. Hybridoma 11(2), 245–256 (1992)

    Article  PubMed  CAS  Google Scholar 

  48. Roque-Navarro, L., Mateo, C., Lombardero, J., Mustelier, G., Fernandez, A., Sosa, K., Morrison, S.L., Perez, R.: Humanization of predicted T-cell epitopes reduces the immunogenicity of chimeric antibodies: new evidence supporting a simple method. Hybrid Hybridomics 22(4), 245–257 (2003). doi:10.1089/153685903322328974

    Article  PubMed  CAS  Google Scholar 

  49. de Leon, J., Fernandez, A., Mesa, C., Clavel, M., Fernandez, L.E.: Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells. Cancer Immunol. Immunother. 55(4), 443–450 (2006). doi:10.1007/s00262-005-0041-6

    Article  PubMed  Google Scholar 

  50. Svennerholm, L.: Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta 24(3), 604–611 (1957)

    Article  PubMed  CAS  Google Scholar 

  51. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951)

    PubMed  CAS  Google Scholar 

  52. Lopez-Requena, A., Mateo de Acosta, C., Perez, A., Valle, A., Lombardero, J., Sosa, K., Perez, R., Vazquez, A.M.: Chimeric anti-N-glycolyl-ganglioside and its anti-idiotypic MAbs: immunodominance of their variable regions. Hybrid Hybridomics 22(4), 235–243 (2003)

    Article  PubMed  CAS  Google Scholar 

  53. Meisen, I., Peter-Katalinic, J., Muthing, J.: Direct analysis of silica gel extracts from immunostained glycosphingolipids by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry. Anal. Chem. 76(8), 2248–2255 (2004). doi:10.1021/ac035511t

    Article  PubMed  CAS  Google Scholar 

  54. Lemaire, R., Tabet, J.C., Ducoroy, P., Hendra, J.B., Salzet, M., Fournier, I.: Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal. Chem. 78(3), 809–819 (2006). doi:10.1021/ac0514669

    Article  PubMed  CAS  Google Scholar 

  55. Strohalm, M., Kavan, D., Novak, P., Volny, M., Havlicek, V.: mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 82(11), 4648–4651 (2010). doi:10.1021/ac100818g

    Article  PubMed  CAS  Google Scholar 

  56. Cycon, K.A., Clements, J.L., Holtz, R., Fuji, H., Murphy, S.P.: The immunogenicity of L1210 lymphoma clones correlates with their ability to function as antigen-presenting cells. Immunology 128(1 Suppl), e641–e651 (2009). doi:10.1111/j.1365-2567.2009.03052.x

    Article  PubMed  Google Scholar 

  57. Portoukalian, J., Zwingelstein, G., Dore, J.F.: Lipid composition of human malignant melanoma tumors at various levels of malignant growth. Eur. J. Biochem. 94(1), 19–23 (1979)

    Article  PubMed  CAS  Google Scholar 

  58. Tsuchida, T., Saxton, R.E., Morton, D.L., Irie, R.F.: Gangliosides of human melanoma. J. Natl. Cancer. Inst. 78(1), 45–54 (1987)

    PubMed  CAS  Google Scholar 

  59. Ravindranath, M.H., Muthugounder, S., Presser, N., Selvan, S.R., Santin, A.D., Bellone, S., Saravanan, T.S., Morton, D.L.: Immunogenic gangliosides in human ovarian carcinoma. Biochem. Biophys. Res. Commun. 353(2), 251–258 (2007). doi:10.1016/j.bbrc.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  60. Dohi, T., Nores, G., Hakomori, S.: An IgG3 monoclonal antibody established after immunization with GM3 lactone: immunochemical specificity and inhibition of melanoma cell growth in vitro and in vivo. Cancer Res. 48(20), 5680–5685 (1988)

    PubMed  CAS  Google Scholar 

  61. Hoon, D.S., Wang, Y., Sze, L., Kanda, H., Watanabe, T., Morrison, S.L., Morton, D.L., Irie, R.F.: Molecular cloning of a human monoclonal antibody reactive to ganglioside GM3 antigen on human cancers. Cancer Res. 53(21), 5244–5250 (1993)

    PubMed  CAS  Google Scholar 

  62. Takahashi, T., Johnson, T.D., Nishinaka, Y., Morton, D.L., Irie, R.F.: IgM anti-ganglioside antibodies induced by melanoma cell vaccine correlate with survival of melanoma patients. J. Invest. Dermatol. 112(2), 205–209 (1999). doi:10.1046/j.1523-1747.1999.00493.x

    Article  PubMed  CAS  Google Scholar 

  63. Irie, R.F., Ollila, D.W., O’Day, S., Morton, D.L.: Phase I pilot clinical trial of human IgM monoclonal antibody to ganglioside GM3 in patients with metastatic melanoma. Cancer Immunol. Immunother. 53(2), 110–117 (2004). doi:10.1007/s00262-003-0436-1

    Article  PubMed  CAS  Google Scholar 

  64. Hakomori, S.I.: Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett. 584(9), 1901–1906 (2010). doi:10.1016/j.febslet.2009.10.065

    Article  PubMed  CAS  Google Scholar 

  65. Handa, K., Hakomori, S.I.: Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj. J. (2012). doi:10.1007/s10719-012-9380-7

    PubMed  Google Scholar 

  66. Watanabe, R., Ohyama, C., Aoki, H., Takahashi, T., Satoh, M., Saito, S., Hoshi, S., Ishii, A., Saito, M., Arai, Y.: Ganglioside G(M3) overexpression induces apoptosis and reduces malignant potential in murine bladder cancer. Cancer Res. 62(13), 3850–3854 (2002)

    PubMed  CAS  Google Scholar 

  67. Prinetti, A., Aureli, M., Illuzzi, G., Prioni, S., Nocco, V., Scandroglio, F., Gagliano, N., Tredici, G., Rodriguez-Menendez, V., Chigorno, V., Sonnino, S.: GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 20(1), 62–77 (2010). doi:10.1093/glycob/cwp143

    Article  PubMed  CAS  Google Scholar 

  68. Prinetti, A., Cao, T., Illuzzi, G., Prioni, S., Aureli, M., Gagliano, N., Tredici, G., Rodriguez-Menendez, V., Chigorno, V., Sonnino, S.: A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J. Biol. Chem. 286(47), 40900–40910 (2011). doi:10.1074/jbc.M111.286146

    Article  PubMed  CAS  Google Scholar 

  69. Nojiri, H., Yamana, H., Shirouzu, G., Suzuki, T., Isono, H.: Glycotherapy for cancer: remodeling of ganglioside pattern as an effective approach for cancer therapy. Cancer Detect. Prev. 26(2), 114–120 (2002)

    Article  PubMed  CAS  Google Scholar 

  70. Tringali, C., Lupo, B., Cirillo, F., Papini, N., Anastasia, L., Lamorte, G., Colombi, P., Bresciani, R., Monti, E., Tettamanti, G., Venerando, B.: Silencing of membrane-associated sialidase Neu3 diminishes apoptosis resistance and triggers megakaryocytic differentiation of chronic myeloid leukemic cells K562 through the increase of ganglioside GM3. Cell Death Differ. 16(1), 164–174 (2009). doi:10.1038/cdd.2008.141

    Article  PubMed  CAS  Google Scholar 

  71. Prinetti, A., Loberto, N., Chigorno, V., Sonnino, S.: Glycosphingolipid behaviour in complex membranes. Biochim. Biophys. Acta 1788(1), 184–193 (2009). doi:10.1016/j.bbamem.2008.09.001

    Article  PubMed  CAS  Google Scholar 

  72. Gabri, M.R., Otero, L.L., Gomez, D.E., Alonso, D.F.: Exogenous incorporation of neugc-rich mucin augments n-glycolyl sialic acid content and promotes malignant phenotype in mouse tumor cell lines. J. Exp. Clin. Cancer Res. 28, 146 (2009). doi:10.1186/1756-9966-28-146

    Article  PubMed  Google Scholar 

  73. Segatori, V.I., Vazquez, A.M., Gomez, D.E., Gabri, M.R., Alonso, D.F.: Preclinical evaluation of racotumomab, an anti-idiotype monoclonal antibody to N-glycolyl-containing gangliosides, with or without chemotherapy in a mouse model of non-small cell lung cancer. Front. Oncol. 2, 160 (2012). doi:10.3389/fonc.2012.00160

    Article  PubMed  Google Scholar 

  74. Segatori, V.I., Otero, L.L., Fernandez, L.E., Gomez, D.E., Alonso, D.F., Gabri, M.R.: Antitumor protection by NGcGM3/VSSP vaccine against transfected B16 mouse melanoma cells overexpressing N-glycolylated gangliosides. In Vivo 26(4), 609–617 (2012)

    PubMed  CAS  Google Scholar 

  75. Labrada, M., Clavell, M., Bebelagua, Y., Leon, J., Alonso, D.F., Gabri, M.R., Veloso, R.C., Verez, V., Fernandez, L.E.: Direct validation of NGcGM3 ganglioside as a new target for cancer immunotherapy. Expert. Opin. Biol. Ther. 10(2), 153–162 (2010). doi:10.1517/14712590903443084

    Article  PubMed  CAS  Google Scholar 

  76. Miura, Y., Kainuma, M., Jiang, H., Velasco, H., Vogt, P.K., Hakomori, S.: Reversion of the Jun-induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc. Natl. Acad. Sci. U. S. A. 101(46), 16204–16209 (2004). doi:10.1073/pnas.0407297101

    Article  PubMed  CAS  Google Scholar 

  77. Liu, J.W., Sun, P., Yan, Q., Paller, A.S., Gerami, P., Ho, N., Vashi, N., Le Poole, I.C., Wang, X.Q.: De-N-acetyl GM3 promotes melanoma cell migration and invasion through urokinase plasminogen activator receptor signaling-dependent MMP-2 activation. Cancer Res. 69(22), 8662–8669 (2009). doi:10.1158/0008-5472.CAN-09-1099

    Article  PubMed  CAS  Google Scholar 

  78. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  79. Birkle, S., Zeng, G., Gao, L., Yu, R.K., Aubry, J.: Role of tumor-associated gangliosides in cancer progression. Biochimie 85(3–4), 455–463 (2003)

    Article  PubMed  CAS  Google Scholar 

  80. Potapenko, M., Shurin, G.V., de Leon, J.: Gangliosides as immunomodulators. Adv. Exp. Med. Biol. 601, 195–203 (2007)

    Article  PubMed  Google Scholar 

  81. de Leon, J., Fernandez, A., Clavell, M., Labrada, M., Bebelagua, Y., Mesa, C., Fernandez, L.E.: Differential influence of the tumour-specific non-human sialic acid containing GM3 ganglioside on CD4 + CD25- effector and naturally occurring CD4 + CD25+ regulatory T cells function. Int. Immunol. 20(4), 591–600 (2008). doi:10.1093/intimm/dxn018

    Article  PubMed  Google Scholar 

  82. Sorice, M., Pavan, A., Misasi, R., Sansolini, T., Garofalo, T., Lenti, L., Pontieri, G.M., Frati, L., Torrisi, M.R.: Monosialoganglioside GM3 induces CD4 internalization in human peripheral blood T lymphocytes. Scand. J. Immunol. 41(2), 148–156 (1995)

    Article  PubMed  CAS  Google Scholar 

  83. Garofalo, T., Sorice, M., Misasi, R., Cinque, B., Giammatteo, M., Pontieri, G.M., Cifone, M.G., Pavan, A.: A novel mechanism of CD4 down-modulation induced by monosialoganglioside GM3. Involvement of serine phosphorylation and protein kinase c delta translocation. J. Biol. Chem. 273(52), 35153–35160 (1998)

    Article  PubMed  CAS  Google Scholar 

  84. Shurin, G.V., Shurin, M.R., Bykovskaia, S., Shogan, J., Lotze, M.T., Barksdale Jr., E.M.: Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 61(1), 363–369 (2001)

    PubMed  CAS  Google Scholar 

  85. Peguet-Navarro, J., Sportouch, M., Popa, I., Berthier, O., Schmitt, D., Portoukalian, J.: Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J. Immunol. 170(7), 3488–3494 (2003)

    PubMed  CAS  Google Scholar 

  86. Padler-Karavani, V., Yu, H., Cao, H., Chokhawala, H., Karp, F., Varki, N., Chen, X., Varki, A.: Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18(10), 818–830 (2008). doi:10.1093/glycob/cwn072

    Article  PubMed  CAS  Google Scholar 

  87. Taylor, R.E., Gregg, C.J., Padler-Karavani, V., Ghaderi, D., Yu, H., Huang, S., Sorensen, R.U., Chen, X., Inostroza, J., Nizet, V., Varki, A.: Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J. Exp. Med. 207(8), 1637–1646 (2010). doi:10.1084/jem.20100575

    Article  PubMed  CAS  Google Scholar 

  88. Hedlund, M., Padler-Karavani, V., Varki, N.M., Varki, A.: Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc. Natl. Acad. Sci. U. S. A. 105(48), 18936–18941 (2008). doi:10.1073/pnas.0803943105

    Article  PubMed  CAS  Google Scholar 

  89. Fuji, H., Iribe, H.: Clonal variation in tumorigenicity of L1210 lymphoma cells: nontumorigenic variants with an enhanced expression of tumor-associated antigen and Ia antigens. Cancer Res. 46(11), 5541–5547 (1986)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Luis Enrique Fernández for his valuable comments on the project. We are also grateful to our fellow researchers Alex Miranda, Darel Martínez, Mayrel Labrada, Nely Rodríguez and Drs. Ana María Hernández and Adriana Carr, as well as technicians Judith Raymond and Katya Sosa for their help. This work was supported by the Center of Molecular Immunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro López-Requena.

Additional information

Ana Victoria Casadesús and Yuniel Fernández-Marrero contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casadesús, A.V., Fernández-Marrero, Y., Clavell, M. et al. A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells. Glycoconj J 30, 687–699 (2013). https://doi.org/10.1007/s10719-013-9473-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-013-9473-y

Keywords

Navigation