Skip to main content
Log in

Measurement of biochemical oxygen demand of the leachates

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biochemical oxygen demand (BOD) of the leachates originally from the different types of landfill sites was studied based on the data measured using the two manometric methods. The measurements of BOD using the dilution method were carried out to assess the typical physicochemical and biological characteristics of the leachates together with some other parameters. The linear regression analysis was used to predict rate constants for biochemical reactions and ultimate BOD values of the different leachates. The rate of a biochemical reaction implicated in microbial biodegradation of pollutants depends on the leachate characteristics, mass of contaminant in the leachate, and nature of the leachate. Character of leachate samples for BOD analysis of using the different methods may differ significantly during the experimental period, resulting in different BOD values. This work intends to verify effect of the different dilutions for the manometric method tests on the BOD concentrations of the leachate samples to contribute to the assessment of reaction rate and microbial consumption of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Slope of the curve (t/BOD t )1/3 versus t (in litres per milligramme)

b :

Interception of the curve (t/BOD t )1/3 versus t (in litres day per milligramme)

B 0B 5 :

Consumption of oxygen in the dilution water (in milligrammes per litre)

BOD5 :

BOD value measured after the 5-day incubation period in the dark at 20 °C (in milligrammes per litre)

BODblank :

BOD value reading affected due to the drop of pressure in the dilution water bottle (in milligrammes per litre)

BODread :

BOD value reading affected due to the drop of pressure in the water sample bottle (in milligrammes per litre)

BOD t :

BOD value at time t (in milligrammes per litre)

DO0–DO5 :

Consumption of oxygen in the water sample (in milligrammes per litre)

F :

Dilution factor (dimensionless)

k :

Biochemical reaction rate constant (in per day)

L :

Oxygen equivalent of the organic biodegradable remaining (in milligrammes per litre)

L 0 :

Oxygen equivalent of organic biodegradable remaining at time zero or ultimate BOD that is the maximum oxygen consumption possible when the biodegradable organics in the leachate have been completely degraded (in milligrammes per litre)

L t :

Oxygen equivalent of the organic biodegradable remaining at time t (in milligrammes per litre)

t :

Time (in days)

References

  • Afolayan, O. S., Ogundele, F. O., & Odewumi, S. G. (2012). Hydrological implication of solid waste disposal on groundwater quality in urbanized area of Lagos State, Nigeria. International Journal of Applied Science and Technology, 2(5), 74–82.

    Google Scholar 

  • Chaturapruek, A., Visvanathan, C., & Ahn, K. H. (2005). Ozonation of membrane bioreactor effluent for landfill leachate treatment. Environmental Technology, 26(1), 65–73. doi:10.1080/09593332608618583.

    Article  CAS  Google Scholar 

  • Chen, Y. Tang, X., Zhan, L. (2009). Advances in environmental geotechnics: Proceedings of the International symposium on Geoenvironmental Engineering in Hangzhou, China, September 8–10, 2009.

  • Cooney, J. J., & Wuertz, S. (1989). Toxic effects of tin compounds on microorganisms. Journal of Industrial Microbiology and Biotechnology, 4(5), 375–402. doi:10.1007/BF01569539.

    Article  CAS  Google Scholar 

  • Cremer, J., Melbinger, A., Frey, E. (2012). Growth dynamics and the evolution of cooperation in microbial populations. Scientific Reports 2, Article Number 281, doi:10.1038/srep00281.

  • Elyazar, I. R. F., Hay, S. I., & Baird, J. K. (2011). Malaria distribution, prevalence, drug resistance and control in Indonesia. Advances in Parasitology, 74, 41–175. doi:10.1016/B978-0-12-385897-9.00002-1.

    Article  Google Scholar 

  • Enujiugha, V. N., & Nwanna, L. C. (2004). Aquatic oil pollution impact indicators. Journal of Applied Sciences and Environmental Management, 8(2), 71–75.

    CAS  Google Scholar 

  • Enzminger, J. D., Robertson, D., Ahlert, R. C., & Kosson, D. S. (1987). Treatment of landfill leachates. Journal of Hazardous Materials, 14(1), 83–101. doi:10.1016/0304-3894(87)87007-3.

    Article  CAS  Google Scholar 

  • Fava, L., Bottoni, P., Crobe, A., Caracciolo, A. B., & Funari, E. (2001). Assessment of leaching potential of aldicarb and its metabolites using laboratory studies. Pest Management Science, 57(12), 1135–1141. doi:10.1002/ps.412.

    Article  CAS  Google Scholar 

  • Foley, A. E., Atkinson, T. C., & Zhao, Y. (2012). Chlorofluorocarbons as tracers of landfill leachate in surface and groundwater. Quarterly Journal of Engineering Geology & Hydrogeology, 45(1), 61–70. doi:10.1144/1470-9236/10-044.

    Article  CAS  Google Scholar 

  • Fulazzaky, M. A. (2011). Determining the resistance of mass transfer for adsorption of the surfactant onto granular activated carbons from hydrodynamic column. Chemical Engineering Journal, 166(3), 832–840. doi:10.1007/j.cej.2010.11.052.

    Article  CAS  Google Scholar 

  • Fulazzaky, M. A., & Omar, R. (2012). Removal of oil and grease contamination from stream water using the granular activated carbon block filter. Clean Technologies and Environmental Policy. doi:10.1007/s10098-012-0471-8.

  • Fulazzaky, M. A., Sunar, N. M., Abd Latiff, A. A., & Mohd Kassim, A. H. (2009). Empirical models of bio-sand filter to calculate the design parameters. Water Science and Technology: Water Supply, 9(6), 723–734. doi:10.2166/ws2009.228.

    Article  CAS  Google Scholar 

  • Gallert, C., & Winter, J. (2005). Environmental biotechnology—concepts and applications: Part 1—Bacterial metabolism in wastewater treatment systems. Weinheim: Wiley-VCH Verlag GmbH & Co.

    Google Scholar 

  • Ghosh, R. K., & Singh, N. (2009). Leaching behaviour of azoxystrobin and metabolites in soil columns. Pest Management Science, 65(9), 1009–1014. doi:10.1002/ps.1787.

    Article  CAS  Google Scholar 

  • Gu, M. B., Gil, G. C., & Kim, J. H. (2002). Enhancing the sensitivity of a two-stage continuous toxicity monitoring system through the manipulation of the dilution rate. Journal of Biotechnology, 93(3), 283–288. doi:10.1016/S0168-1656(01)00410-2.

    Article  CAS  Google Scholar 

  • Guo, R. X., & Chen, J. Q. (2012). Phytoplankton toxicity of the antibiotic chlortetracycline and its UV light degradation products. Chemosphere. doi:10.1016/j.chemosphere.2012.01.031.

  • Heijnen, J. J., & van Dijken, J. P. (1992). In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnology and Bioengineering, 39(8), 833–858. doi:10.1002/bit.260420916.

    Article  CAS  Google Scholar 

  • Hur, J., & Cho, J. (2012). Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices. Sensors, 12(1), 972–986. doi:10.3390/s120100972.

    Article  CAS  Google Scholar 

  • Kulandaivelu, V., & Bhat, R. (2012). Change in the physicochemical and biological quality attributes of soil following amendment with untreated coffee processing wastewater. European Journal of Soil Biology, 50, 39–43. doi:10.1016/j.ejsobi.2011.11.011.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., Lo, W., Chan, G., & Sillanpää, M. E. T. (2010). Biological processes for treatment of landfill leachate. Journal of Environmental Monitoring, 12(11), 2032–2047. doi:10.1039/C0EM00076K.

    Article  CAS  Google Scholar 

  • Lee, A. H., Nikraz, H., & Hung, Y. T. (2010). Influence of waste age on landfill leachate quality. International Journal of Environmental Science and Development, 1(4), 347–350.

    Google Scholar 

  • Lin, C. H., Lerch, R. N., Garrett, H. E., & George, M. F. (2004). Incorporating forage grasses in riparian buffers for bioremediation of atrazine, isoxaflutole and nitrate in Missouri. Agroforestry Systems, 63(1), 91–99. doi:10.1023/B:AGFO.0000049437.70313.ef.

    Article  Google Scholar 

  • Mahmud, K., Hossain, M. D., & Shams, S. (2011). Different treatment strategies for highly polluted landfill leachate in developing countries. Waste Management. doi:10.1016/j.wasman.2011.10.026.

  • Mangkoedihardjo, S. (2006). Revaluation of maturity and stability indices for compost. Journal of Applied Sciences and Environmental Management, 10(3), 83–85.

    Article  Google Scholar 

  • Ozanne, F. (1990). Les lixiviats de decharge, le point des connaissances en 1990, TSM-L’Eau, 6, 289–314.

  • Podrabsky, J. E., & Somero, G. N. (2004). Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. Journal of Experimental Biology, 207(Pt 13), 2237–2254. doi:10.1242/jeb.01016.

    Article  CAS  Google Scholar 

  • Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. doi:10.1016/j.jhazmat.2007.09.077.

    Article  CAS  Google Scholar 

  • Roppola, K., Kuokkanen, T., Rämö, J., Prokkola, H., & Heiska, E. (2007). Comparison study of different BOD tests in the determination of BOD7 evaluated in a model domestic sewage. Journal of Automated Methods and Management in Chemistry. doi:10.1155/2007/39761. Article ID 39761.

  • Roques, H. (1979). Fondament Theorique du Traitement Biologique des Eaux. Paris: Technique et Documentation.

    Google Scholar 

  • Słomczyńska, B., & Słomczyński, T. (2004). Physico-chemical and toxicological characteristics of leachates from MSW landfills. Polish Journal of Environmental Studies, 13(6), 627–637.

    Google Scholar 

  • Smith, D. C., Senior, E., & Dicks, H. M. (1999). Irrigation of soil with synthetic landfill leachate—breakthrough behaviour of selected pollutants. Water, Air, and Soil Pollution, 109(1–4), 327–342. doi:10.1023/A:1005085414309.

    Article  CAS  Google Scholar 

  • Srinivas, T. (2008). Environmental Biotechnology. New Delhi: New Age International Pvt. Ltd., Publishers.

    Google Scholar 

  • Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., & Weber, J. V. (2006). Landfill leachate treatment methods: a review. Environmental Chemistry Letters, 4(1), 51–61. doi:10.1007/s10311-005-0016-z.

    Article  CAS  Google Scholar 

  • Xiao, Y., Bai, X., Ouyang, Z., Zheng, H., & Xing, F. (2007). The composition, trend and impact of urban solid waste in Beijing. Environmental Monitoring and Assessment, 135(1–3), 21–30. doi:10.1007/s10661-007-9708-0.

    Article  CAS  Google Scholar 

  • Zeeb, M., & Sadeghi, M. (2012). Sensitive determination of terazosin in pharmaceutical formulations and biological samples by ionic-liquid microextraction prior to spectrofluorimetry. International Journal of Analytical Chemistry. doi:10.1155/2012/546282.

Download references

Acknowledgments

The study used the financial supports from Indonesian Ministry of Public Works (IMPW). The financial supports provided by IMPW were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Ali Fulazzaky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulazzaky, M.A. Measurement of biochemical oxygen demand of the leachates. Environ Monit Assess 185, 4721–4734 (2013). https://doi.org/10.1007/s10661-012-2899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2899-z

Keywords

Navigation