Skip to main content
Log in

Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The extremely high rate of karyotypic evolution that characterizes the shrews of the Sorex araneus group makes this group an exceptionally interesting model for population genetics and evolutionary studies. Here, we attempted to map 46 microsatellite markers at the chromosome arm level using flow-sorted chromosomes from three karyotypically different taxa of the Sorex araneus group (S. granarius and the chromosome races Cordon and Novosibirsk of S. araneus). The most likely localizations were provided for 35 markers, among which 25 were each unambiguously mapped to a single locus on the corresponding chromosomes in the three taxa, covering the three sexual chromosomes (XY1Y2) and nine of the 18 autosomal arms of the S. araneus group. The results provide further evidence for a high degree of conservation in genome organization in the S. araneus group despite the presence of numerous Robertsonian rearrangements. These markers can therefore be used to compare the genetic structure among taxa of the S. araneus group at the chromosome level and to study the role of chromosomal rearrangements in the genetic diversification and speciation process of this group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnason U, Janke A (2002) Mitogenomics analyses of eutherian relationships. Cytogenet Genome Res 96: 20–32.

    Article  CAS  PubMed  Google Scholar 

  • Balloux F, Ecoffey E, Fumagalli L, Goudet J, Wyttenbach A, Hausser J (1998) Microsatellite conservation, polymorphism, and GC content in shrews of the genus Sorex (Insectivora, Mammalia). Mol Biol Evol 15: 473–475.

    CAS  PubMed  Google Scholar 

  • Balloux F, Brünner H, Lugon-Moulin N, Hausser J, Goudet J (2000) Microcatellite can be misleading: an empirical and simulation study. Evolution 54: 1414–1422.

    CAS  PubMed  Google Scholar 

  • Basset P, Yannic G, Hausser J (2006) Genetic and karyotypic structure in the shrews of the Sorex araneus group: Are they independent? Mol Ecol (In press).

  • Brünner H, Lugon-Moulin N, Hausser J (2002) Alps, genes, and chromosomes: their role in the formation of species in the Sorex araneus group (Mammalia, Insectivora), as inferred from two hybrid zones. Cytogenet Genome Res 96: 85–96.

    PubMed  Google Scholar 

  • Coyne JA, Orr AH (2004) Speciation. Sunderland, Mass.: Sinauer Associates.

    Google Scholar 

  • Doležel J, Kubalákova M, Bartoš J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosom Res 12: 77–91.

    Google Scholar 

  • Douady CJ, Chatelier PI, Madsen O et al. (2002) Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews. Mol Phylogenet Evol 25: 200–209.

    CAS  PubMed  Google Scholar 

  • Ferguson-Smith MA (1997) Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur J Hum Genet 5: 253–265.

    CAS  PubMed  Google Scholar 

  • Fumagalli L, Taberlet P, Stewart D, Gielly L, Hausser J, Vogel P (1999) Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data. Mol Phylogenet Evol 11: 222–235.

    CAS  PubMed  Google Scholar 

  • Ibrahim SF, van den Engh G (2004) High-speed chromosome sorting. Chromosom Res 12: 5–14.

    CAS  Google Scholar 

  • Lugon-Moulin N, Brünner H, Wyttenbach A, Hausser J, Goudet J (1999) Hierarchical analyses of genetic differentiation in a hybrid zone of Sorex araneus (Insectivora: Soricidae). Mol Ecol 8: 419–431.

    Article  Google Scholar 

  • Lugon-Moulin N, Balloux F, Hausser J (2000) Genetic differentiation of common shrew (Sorex araneus) populations among different alpine valleys revealed by microsatellites. Acta Theriol 45: 103–117.

    Google Scholar 

  • Murphy WJ, Pevzner PA, O'Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20: 631–639.

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Barton NH (2003) Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution 57: 447–459.

    PubMed  Google Scholar 

  • Noor MAF, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98: 12084–12088.

    Article  CAS  PubMed  Google Scholar 

  • Nowak RM (1991) Walker's Mammals of the World, 5th edn. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • O'Brien SJ, Menotti-Raymond M, Murphy WJ et al. (1999) The promise of comparative genomics in mammals. Science 286: 458–481.

    Article  PubMed  Google Scholar 

  • O'Brien SJ, Eizirik E, Murphy WJ (2001) On choosing Mammalian genomes for sequencing. Science 292: 2264–2266.

    Article  PubMed  Google Scholar 

  • Pack SD, Borodin PM, Serov OL, Searle JB (1993) The X-autosome translocation in the common shrew (Sorex araneus L.): late replication in female somatic cells and pairing in male meiosis. Chromosoma 102: 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Pack SD, Kolonin MG, Borodin PM, Searle JB, Serov OL (1995) Gene mapping in the common shrew (Sorex araneus; Insectivora) by shrew–rodent cell hybrids: chromosome localization of the loci for HPRT, TK, LDHA, MDH1, G6PD, PGD, and ADA. Mamm Genome 6: 784–787.

    Article  CAS  PubMed  Google Scholar 

  • Panithanarak T, Hauffe HC, Dallas JF, Glover A, Ward RG, Searle JB (2004) Linkage-dependent gene flow in a house mouse chromosomal hybrid zone. Evolution 58: 184–192.

    PubMed  Google Scholar 

  • Pennisi E (2004) More genomes, but shallower coverage. Science 304: 1227.

    CAS  PubMed  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16: 351–358.

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Whitton J, Gardner K (1999) Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflowers species. Genetics 152: 713–727.

    CAS  PubMed  Google Scholar 

  • Samonte RV, Eichler EE (2002) Segmental duplication and the evolution of the primate genome. Nat Rev Genet 3: 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Sargan DR, Yang F, Squire M, Milne BS, O'Brien PCM, Ferguson-Smith MA (2000) Use of flow-sorted canine chromosomes in the assignment of canine linkage, radiation hybrid, and syntenic groups to chromosomes: refinement and verification of the comparative chromosome map for dog and human. Genomics 69: 182–195.

    Article  CAS  PubMed  Google Scholar 

  • Searle JB, Wójcik JM (1998) Chromosomal evolution: the case of Sorex araneus. In Wójcik JM, Wolsan M, eds. Evolution of Shrews. Bialowieza: Mammal Research Institute, Polish Academy of Sciences, pp. 219–262.

    Google Scholar 

  • Searle JB, Fedyk S, Fredga K, Hausser J, Volobouev VT (1991) Nomenclature for the chromosomes of the common shrew Sorex araneus. Mém Soc Vaud Sci Nat 19: 13–22.

    Google Scholar 

  • Sharman GB (1956) Chromosomes of the common shrew. Nature 177: 941–942.

    CAS  PubMed  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP PCR amplified flow sorted chromosomes. Gene Chromosomes Cancer 4: 257–263.

    CAS  Google Scholar 

  • Thomas EE, Srebro N, Sebat J et al. (2004) Distribution of short paired duplications in mammalian genomes. Proc Natl Acad Sci USA 101: 10349–10354.

    CAS  PubMed  Google Scholar 

  • Volobouev VT (1989) Phylogenetic relationships of the Sorex araneus–arcticus species complex (Insectivora, Soricidae) based on high-resolution chromosome analysis. J Heredity 80: 284–290.

    Google Scholar 

  • Volobouev VT, Catzeflis, F (1989) Mechanisms of chromosomal evolution in three European species of the Sorex araneus– arcticus group (Insectivora: Soricidae). Z zool Syst Evolut-forsch 27: 252–262.

    Google Scholar 

  • Wójcik JM, Searle JB (1988) The chromosome complement of Sorex granarius–the ancestral karyotype of the common shrew (Sorex araneus)? Heredity 61: 225–229.

    PubMed  Google Scholar 

  • Wójcik JM, Ratkiewicz M, Searle JB (2002) Evolution of the common shrew Sorex araneus: chromosomal and molecular aspects. Acta Theriol 47: 139–167.

    Google Scholar 

  • Wójcik JM, Borodin PM, Fedyk S, et al. (2003) The list of the chromosome races of the common shrew Sorex araneus (updated 2002). Mammalia 67: 169–178.

    Google Scholar 

  • Wyttenbach A, Favre L, Hausser J (1997) Isolation and characterization of simple sequence repeats in the genome of the common shrew. Mol Ecol 6: 797–800.

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103: 642–652.

    CAS  PubMed  Google Scholar 

  • Yang F, O'Brien PCM, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202.

    CAS  PubMed  Google Scholar 

  • Zhdanova NS, Fokina VM, Balloux F et al. (2003) Current cytogenetic map of the common shrew, Sorex araneus L.: localization of 7 genes and 4 microsatellites. Mammalia 68: 285–293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Basset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basset, P., Yannic, G., Yang, F. et al. Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group. Chromosome Res 14, 253–262 (2006). https://doi.org/10.1007/s10577-006-1041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1041-x

Key words

Navigation