Skip to main content
Log in

Engineered human dicentric chromosomes show centromere plasticity

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The centromere is essential for the faithful distribution of a cell's genetic material to subsequent generations. Despite intense scrutiny, the precise genetic and epigenetic basis for centromere function is still unknown. Here, we have used engineered dicentric human chromosomes to investigate mammalian centromere structure and function. We describe three classes of dicentric chromosomes isolated in different cell lines: functionally monocentric chromosomes, in which one of the two genetically identical centromeres is consistently inactivated; functionally dicentric chromosomes, in which both centromeres are consistently active; and dicentric chromosomes heterogeneous with respect to centromere activity. A study of serial single cell clones from heterogeneous cell lines revealed that while centromere activity is usually clonal, the centromere state (i.e. functionally monocentric or dicentric) in some lines can switch within a growing population of cells. Because pulsed field gel analysis indicated that the DNA at the centromeres of these chromosomes did not change detectably, this switching of the centromere state is most likely due to epigenetic changes. Inactivation of one of the two active centromeres in a functionally dicentric chromosome was observed in a percentage of cells after treatment with Trichostatin A, an inhibitor of histone deacetylation. This study provides evidence that the activity of human centromeres, while largely stable, can be subject to dynamic change, most likely due to epigenetic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71: 695–714.

    Article  PubMed  Google Scholar 

  • Amor DJ, Kalitsis P, Sumer H, Choo KH (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14: 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Belyaev N, Keohane AM, Turner BM (1996) Differential underacetylation of histones H2A, H3 and H4 on the inactive X chromosome in human female cells. Hum Genet 97: 573–578.

    Article  PubMed  CAS  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL Jr, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430: 578–582.

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Powers VE, Munroe DL, Sheinin R, Willard HF (1989) Gene on short arm of human X chromosome complements murine tsA1S9 DNA synthesis mutation. Somat Cell Mol Genet 15: 173–178.

    PubMed  CAS  Google Scholar 

  • Choo AKH (2000) Centromerization. Trends Cell Biol 10: 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F (2003) Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 14: 3821–3833.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112: 407–421.

    Article  PubMed  CAS  Google Scholar 

  • Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats [see comments]. Trends Genet 14: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Ratrie H, Stetten G (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91: 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  • Fisher AM, Al-Gazali et al. (1997) Centromeric inactivation in a dicentric human Y;21 translocation chromosome. Chromosoma 106: 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Grimes BR, Babcock J, Rudd MK, Chadwick B, Willard HF (2004) Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol 5: R89.

    Article  PubMed  Google Scholar 

  • Haaf T, Ward DC (1994) Structural analysis of alpha satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3: 697–709.

    PubMed  CAS  Google Scholar 

  • Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297: 2232–2237.

    Article  PubMed  CAS  Google Scholar 

  • Hall IM, Noma K, Grewal SI (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci USA 100: 193–198.

    PubMed  CAS  Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes [see comments]. Nat Genet 15: 345–355.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Furuyama T, Ahmad K (2004) Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20: 320–326.

    Article  PubMed  CAS  Google Scholar 

  • Higgins AW, Schueler MG, Willard HF (1999) Chromosome engineering: generation of mono- and dicentric isochromosomes in a somatic cell hybrid system. Chromosoma 108: 256–265.

    Article  PubMed  CAS  Google Scholar 

  • Ikeno M, Grimes B, Okazaki T et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16: 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Jeppesen P, Mitchell A, Turner B, Perry P (1992) Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma 101: 322–332.

    Article  PubMed  CAS  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13: 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Koshland D, Rutledge L, Fitzgerald-Hayes M, Hartwell LH (1987) A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 48: 801–812.

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  PubMed  CAS  Google Scholar 

  • Mahtani MM, Willard HF (1990) Pulsed-field gel analysis of alpha satellite DNA at the human X chromosome centromere: high frequency polymorphisms and array size estimate. Genomics 7: 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Maison C, Bailly D, Peters AH et al. (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30: 329–334.

    Article  PubMed  Google Scholar 

  • McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken in meiosis. Proc Natl Acad Sci 25: 405–416.

    Google Scholar 

  • Murphy TD, Karpen GH (1998) Centromeres take flight: alpha satellite and the quest for the human centromere. Cell 93: 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Nagaraja R, MacMillan S et al. (1997) X chromosome map at 75-kb STS resolution, revealing extremes of recombination and GC content. Genome Res 7: 210–222.

    PubMed  CAS  Google Scholar 

  • Nakano M, Okamoto Y, Ohzeki J, Masumoto H (2003) Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J Cell Sci 116: 4021–4034.

    PubMed  CAS  Google Scholar 

  • O'Keefe RT, Henderson SC, Spector DL (1992) Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J Cell Biol 116: 1095–1110.

    Article  PubMed  Google Scholar 

  • Page SL, Shaffer LG (1998) Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosom Res 6: 115–122.

    CAS  Google Scholar 

  • Palmer DK, O'Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104: 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599.

    PubMed  CAS  Google Scholar 

  • Ross MT, Graham DV et al. (2005) The DNA sequence of the human X chromosome. Nature 434: 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Rudd MK, Willard HF (2004) Analysis of the centromeric regions of the human genome assembly. Trends Genet 20: 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Rudd MK, Mays RW, Schwartz S, Willard HF (2003) Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol Cell Biol 23: 7689–7697.

    Article  PubMed  CAS  Google Scholar 

  • Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ (1997) CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 139: 1373–1382.

    Article  PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Nagaraja R et al. (2000) Large-insert clone/STS contigs in Xq11–q12, spanning deletions in patients with androgen insensitivity and mental retardation. Genomics 66: 104–109.

    Article  PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294: 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Shelby RD, Vafa O, Sullivan KF (1997) Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol 136: 501–513.

    Article  PubMed  CAS  Google Scholar 

  • Shelby RD, Monier K, Sullivan KF (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151: 1113–1118.

    Article  PubMed  CAS  Google Scholar 

  • Steiner N, Clarke L (1994) A novel epigenetic effect can alter centromere function in fission yeast. Cell 79: 865–874.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan B, Karpen G (2001) Centromere identity in Drosophila is not determined in vivo by replication timing. J Cell Biol 154: 683–690.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11: 1076–1083.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Schwartz S (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet 5: 2189–2198.

    Google Scholar 

  • Sullivan BA, Warburton PE (1999) Studying progression of vertebrate chromosomes through mitosis by immunofluorescence and FISH. In: Bickmore WA, ed. Chromosome Structural Analysis—A Practical Approach. Oxford: Oxford University Press, pp. 81–101.

    Google Scholar 

  • Sullivan BA, Willard HF (1998) Stable dicentric X chromsomes with two functional centromeres. Nat Genet 20: 227–228.

    PubMed  CAS  Google Scholar 

  • Sullivan BA, Wolff DJ, Schwartz S (1994a) Analysis of centromeric activity in Robertsonian translocations: implications for a functional acrocentric hierarchy. Chromosoma 103: 459–467.

    PubMed  CAS  Google Scholar 

  • Sullivan KF, Hechenberger M, Masri K (1994b) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127: 581–592.

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Maison C, Roche D, Almouzni G (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 3: 114–120.

    Article  PubMed  CAS  Google Scholar 

  • Therman E, Sarto GE, Patau K (1974) Apparently isodicentric but functionally monocentric X chromosome in man. Am J Hum Genet 26: 83–92.

    PubMed  CAS  Google Scholar 

  • Therman E, Trunca C, Kuhn EM, Sarto GE (1986) Dicentric chromosomes and the inactivation of the centromere. Hum Genet 72: 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Tyler-Smith C, Oakey RJ et al. (1993) Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nat Genet 5: 368–375.

    Article  PubMed  CAS  Google Scholar 

  • Vianna-Morgante AM, Rosenberg C (1986) Deletion of the centromere as a mechanism for achieving stability of a dicentric chromosome. Cytogenet Cell Genet 42: 119–122.

    PubMed  CAS  Google Scholar 

  • Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosom Res 12: 617–626.

    CAS  Google Scholar 

  • Warburton P, Willard H (1996) Evolution of centromeric alpha satellite DNA: molecular organization within and between human and primate chromosomes. In: Jackson M, Strachan T, Dover G, eds. Human Genome Evolution. Oxford, UK: BIOS Scientific Publishers, pp. 121–145.

    Google Scholar 

  • Warburton PE, Cooke CA et al. (1997) Immunolocalization of CENP—A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7: 901–904.

    Article  PubMed  CAS  Google Scholar 

  • Waye JS, Willard HF (1985) Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. Nucleic Acids Res 12: 2731–2743.

    Google Scholar 

  • Waye JS, Mitchell AR, Willard HF (1988) Organization and genomic distribution of “82H” alpha satellite DNA. Hum Genet 78: 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: High frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci U S A 86: 9394–9398.

    PubMed  CAS  Google Scholar 

  • Wiens GR, Sorger PK (1998) Centromeric chromatin and epigenetic effects in kinetochore assembly. Cell 93: 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Wood KW, Sakowicz R, Goldstein LS, Cleveland DW (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91: 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Yen TJ, Compton DA, Wise D et al. (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10: 1245–1254.

    PubMed  CAS  Google Scholar 

  • Yen TJ, Li G, Schaar BT, Szilak I, Cleveland DW (1992) CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359: 536–539.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huntington F. Willard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, A.W., Gustashaw, K.M. & Willard, H.F. Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res 13, 745–762 (2005). https://doi.org/10.1007/s10577-005-1009-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-1009-2

Key words

Navigation