Skip to main content

Advertisement

Log in

Regional differences in the abundance of native, introduced, and hybrid Typha spp. in northeastern North America influence wetland invasions

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

In northeastern North America, an important wetland invader is the cattail Typha × glauca, a hybrid of native Typha latifolia and introduced Typha angustifolia. Although intensively studied in localized wetlands around the Great Lakes, the distributions of the hybrid and its parental species across broad spatial scales are poorly known. We obtained genotypes from plants collected from 61 sites spanning two geographical regions. The first region, near the Great Lakes and St. Lawrence Seaway (GLSL), has experienced substantial Typha increases over the last century, whereas more modest increases have occurred in the second region across Nova Scotia, New Brunswick, and Maine (NSNB). We found that hybrids predominate in the GLSL region, thriving in both disturbed and undisturbed habitats, and are expanding at the expense of both parental species. In contrast, the native T. latifolia is by far the most common of the three taxa across all habitat types in the NSNB region. We found no evidence that the formation of backcrossed and advanced-generation hybrids is limited by the reproductive barriers that are evident in F1 hybrids. However, although backcrossed individuals arise in both regions, they are much less common than F1 hybrids, which may explain why the parental species boundary remains. We conclude that F1 hybrids are playing a key role in the invasion of wetlands in the GLSL region, whereas their low frequency in the NSNB region may explain why Typha appears to be much less invasive further east. An improved understanding of these contrasting patterns of distribution is necessary before we can accurately predict future wetland invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angeloni NL, Jankowski KJ, Tuchman NC, Kelly JJ (2006) Effects of an invasive cattail species (Typha × glauca) on sediment nitrogen and microbial community composition in a freshwater wetland. FEMS Microbiol Lett 263:86–92

    Article  PubMed  CAS  Google Scholar 

  • Ayres DR, Smith DL, Zaremba K, Klohr S, Strong DR (2004) Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA. Biol Invasions 6:221–231

    Article  Google Scholar 

  • Ball D, Freeland JR (2013) Synchronous flowering times and asymmetrical hybridization in Typha latifolia and T. angustifolia in northeastern North America. Aquat Bot 104:224–227

    Article  Google Scholar 

  • Boers AM, Veltman RLD, Zedler JB (2007) Typha × glauca dominance and extended hydroperiod constrain restoration of wetland diversity. Ecol Eng 29:232–244

    Article  Google Scholar 

  • Cade TJ (1983) Hybridization and gene exchange among birds in relation to conservation. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL (eds) Genetics and conservation. The Benjamin/Cummings Publishing Company, Inc., Menlo Park, pp 288–309

    Google Scholar 

  • Ciotir C, Kirk H, Freeland JR (2013) Intercontinental dispersal of Typha angustifolia and T. latifolia between Europe and North America has implications for Typha invasions. Biol Invasions doi:10.1007/s10530-012-0377-9

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Con Gen Res 4:359–361

    Article  Google Scholar 

  • Edmands S, Deimler JK (2004) Local adaptation, intrinsic coadaptation and the effects of environmental stress on interpopulation hybrids in the copepod Tigriopus californicus. J Exp Mar Biol Ecol 303:183–196

    Article  Google Scholar 

  • Erickson DL, Fenster CB (2006) Intraspecific hybridization and the recovery of fitness in the native legume Chamaecrista fasciculata. Evolution 60:225–233

    PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. J Evol Biol 18:524–535

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Farrer EC, Goldberg DE (2009) Litter drives ecosystem and plant community changes in cattail invasion. Ecol Appl 19:398–412

    Article  PubMed  Google Scholar 

  • Frieswyk CB, Zedler JB (2007) Vegetation change in great lakes coastal wetlands: deviation from the historical cycle. J Gt Lakes Res 33:366–380

    Article  Google Scholar 

  • Galatowitsch SM, Anderson NO, Ascher PD (1999) Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755

    Article  Google Scholar 

  • Grace JB, Harrison JS (1986) The biology of Canadian Weeds.73. Typha latifolia L., Typha angustifolia L. and Typha × glauca Godr. Can J Plant Sci 66:361–379

    Article  Google Scholar 

  • Grace JB, Wetzel RG (1981) Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. Am Nat 118:463–474

    Article  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? TREE 19:470–474

    PubMed  Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432

    Article  PubMed  CAS  Google Scholar 

  • Huff DR, Peakall R, Smouse PE (1993) Rapd Variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt) Engelm]. Theor Appl Genet 86:927–934

    Article  PubMed  CAS  Google Scholar 

  • Hwang AS, Northrup SL, Alexander JK et al (2011) Long-term experimental hybrid swarms between moderately incompatible Tigriopus californicus populations: hybrid inferiority in early generations yields to hybrid superiority in later generations. Conserv Genet 12:895–909

    Article  Google Scholar 

  • Johnson JR, Fitzpatrick BM, Shaffer HB (2010) Retention of low-fitness genotypes over six decades of admixture between native and introduced tiger salamanders. BMC Evol Biol 10

  • Kirk H, Connelly C, Freeland JR (2011a) Molecular genetic data reveal hybridization between Typha angustifolia and T. latifolia across a broad spatial scale in eastern North America. Aquat Bot 95:189–193

    Article  Google Scholar 

  • Kirk H, Paul J, Straka J et al (2011b) Long distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed in north-eastern North America. Am J Bot 98:1180–1190

    PubMed  Google Scholar 

  • Kuehn MM, Minor JE, White BN (1999) An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers. Mol Ecol 8:1981–1990

    Article  PubMed  CAS  Google Scholar 

  • Larkin DJ, Freyman MJ, Lishawa SC, Geddes P, Tuchmann NC (2012) Mechanisms of dominance by the invasive hybrid cattail Typha × glauca. Biol Invasions 14:65–77

    Article  Google Scholar 

  • Latta RG, Gardner KM, Johansen-Morris AD (2007) Hybridization, recombination, and the genetic basis of fitness variation across environments in Avena barbata. Genetica 129:167–177

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC, Birch LC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–366

    Article  Google Scholar 

  • Lishawa SC, Albert DA, Tuchman NC (2010) Water level decline promotes Typha × glauca establishment and vegetation change in Great Lakes coastal wetlands. Wetlands 30:1085–1096

    Article  Google Scholar 

  • Lishawa SC, Treering DJ, Vail LM, McKenna O, Grimm EC, Tuchman NC (2013) Reconstructing plant invasions using historical aerial imagery and pollen core analysis: Typha in the Laurentian Great Lakes. Div Dist 19:14–28

    Article  Google Scholar 

  • McKenzie-Gopsill A, Kirk H, Van Drunen W, Freeland JR, Dorken M (2012) No evidence for niche segregation in a North American cattail (Typha) species complex. Ecol Evol 2:952–961

    Article  PubMed  Google Scholar 

  • McNaughton SJ (1966) Ecotype function in the Typha community-type. Ecol Mono 36:297–325

    Article  Google Scholar 

  • Mitchell ME, Lishawa SC, Geddes P, Larkin DJ, Treering D, Tuchman NC (2011) Time-dependent impacts of cattail invasion in a Great Lakes coastal wetland complex. Wetlands 31:1143–1149

    Article  Google Scholar 

  • Moody ML, Les DH (2002) Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. PNAS USA 99:14867–14871

    Article  PubMed  CAS  Google Scholar 

  • Muller H (1942) Isolating mechanisms, evolution and temperature. Biol Symp 6:71–125

    Google Scholar 

  • Olson A, Paul J, Freeland JR (2009) Habitat preferences of cattail species and hybrids (Typha spp.) in eastern Canada. Aquat Bot 91:67–70

    Article  Google Scholar 

  • Orloci L (1978) Multivariate analysis in vegetation research. Junk, The Hague

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Ann Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Ann Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Inv 11:1093–1105

    Article  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. TREE 19:198–207

    PubMed  Google Scholar 

  • Seehausen O, Takimoto G, Roy D, Jokela J (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol 17:30–44

    Article  PubMed  Google Scholar 

  • Selbo SM, Snow AA (2004) The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquat Bot 78:361–369

    Article  Google Scholar 

  • Shay JM, Shay CT (1986) Prairie marshes in western Canada, with specific reference to the ecology of five emergent macrophytes. Can J Bot 64:443–454

    Google Scholar 

  • Shih JG, Finkelstein SA (2008) Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records. Wetlands 28:1–16

    Article  Google Scholar 

  • Smith SG (1967) Experimental and natural hybrids in North American Typha (Typhaceae). Am Mid Nat 78:257–287

    Article  Google Scholar 

  • Snow AA, Travis SE, Wildova R, Fer T, Sweeney PM, Marburger JE, Windels S, Kubatova B, Goldberg DE, Mutegi E (2010) Species-specific SSR alleles for studies of hybrid cattails (Typha latifolia × T. angustifolia; Typhaceae) in North America. Am J Bot 97:2061–2067

    Article  PubMed  Google Scholar 

  • Stebbins GL (1969) The significance of hybridization for plant taxonomy and evolution. Taxon 18:26–35

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Google Scholar 

  • Travis SE, Marburger JE, Windels S, Kubatova B (2010) Hybridization dynamics of invasive cattail (Typhaceae) stands in the Western Great Lakes Region of North America: a molecular analysis. J Ecol 98:7–16

    Article  Google Scholar 

  • Tsyusko-Omeltchenko OV, Schable NA, Smith MH, Glenn TC (2003) Microsatellite loci isolated from narrow-leaved cattail Typha angustifolia. Mol Ecol Notes 3:535–538

    Article  CAS  Google Scholar 

  • Tuchman NC, Larkin DJ, Geddes P, Wildova R, Jankowski K, Goldberg DE (2009) Patterns of environmental change associated with Typha × glauca invasion in a Great Lakes coastal wetland. Wetlands 29:964–975

    Article  Google Scholar 

  • Tulbure MG, Johnston CA, Auger DL (2007) Rapid invasion of a Great Lakes coastal wetland by non-native Phragmites australis and Typha. J Gt Lakes Res 33:269–279

    Article  Google Scholar 

  • Vila M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pysek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Wagner DL, Van Driesche RG (2010) Threats posed to rare or endangered insects by invasions of nonnative species. Ann Rev Ent 55:547–568

    Article  CAS  Google Scholar 

  • Whitney KD, Randell RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. Am Nat 167:794–807

    Article  PubMed  Google Scholar 

  • Wilcox DA, Kowalski KP, Hoare HL, Carlson ML, Morgan HN (2008) Cattail invasion of sedge/grass meadows in Lake Ontario: photointerpretation analysis of sixteen wetlands over five decades. J Gt Lakes Res 34:301–323

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to Douglas Ball, Candace Connelly, Emily Crowe, Joy Gillespie, Amber Olson, Jennifer Paul, Kaloni Plut, Nicole Vachon and Lisa Zapfe for helping to collect and/or genotype samples of Typha. This project was funded by the Canadian Natural Sciences and Engineering Research Council and Trent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Freeland.

Appendix

Appendix

See Table 2.

Table 2 Locations, habitat type, sample sizes and taxon frequencies, and genetic diversity for each of the 61 sites sampled in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeland, J., Ciotir, C. & Kirk, H. Regional differences in the abundance of native, introduced, and hybrid Typha spp. in northeastern North America influence wetland invasions. Biol Invasions 15, 2651–2665 (2013). https://doi.org/10.1007/s10530-013-0481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0481-4

Keywords

Navigation