Skip to main content
Log in

Invasive and flexible: niche shift in the drosophilid Zaprionus indianus (Insecta, Diptera)

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Although predictions of potential distributions of invasive species often assume niche conservatism, recent analyses suggest that niche shifts can also occur. Thus, further studies are necessary to provide a better understanding of niche dynamics and to predict geographic distribution in invaded areas. The present study investigated the niche shift hypothesis at a broad biogeographical scale, using the comprehensive distribution of the invasive species Zaprionus indianus in its native (Africa) and invaded (America and India) ranges. Z. indianus is a very successful invasive species that presents high adaptive flexibility and extreme physiological tolerance. To investigate whether Z. indianus changed its climatic niche from Africa to America and India, multivariate analyses, as well as ecological niche modeling procedures (GARP, MAXENT and Mahalanobis distances), were used. Multivariate analyses showed that the niche spaces of Z. indianus in Africa, India and the Americas were significantly different (Wilks’ λ from a Multivariate Analysis of Variance, MANOVA = 0.115; P < 0.0001). Out of 108 occurrences in America, only 11 (ca 10%) were classified, by Canonical Variate Analysis scores, as belonging to its original range in Africa, whereas only 5% of the 39 occurrences in India were classified as belonging to Z. indianus’ original range. Consensus results from MAXENT, GARP and Mahalanobis distances correctly predicted only 27% of the occurrences in India and 85% of occurrences in America. Thus, all analyses showed that Zaprionus indianus quickly expanded ranges into different environments in the invaded areas, suggesting climatic niche shifts, primarily in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allouche O, Steinitz O, Rotem D, Rosenfeld A, Kadmon R (2008) Incorporating distance constraints into species distribution models. J Appl Ecol 45:599–609

    Article  Google Scholar 

  • Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Pearson RG (2005) Equilibrium of species’ distributions with climate. Ecography 28:693–695

    Article  Google Scholar 

  • Atkinson WD (1979) A comparison of the reproductive strategies of domestic species of Drosophila. J Anim Ecol 48:53–64

    Article  Google Scholar 

  • Bächli G (2008) TaxoDros: The database on taxonomy of Drosophilidae. Available at http://taxodros.unizh.ch/. Accessed September 2008

  • Broennimann O, Treier UA, Muller-Scharer H et al (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    Article  CAS  PubMed  Google Scholar 

  • Chassagnard MT, Kraaijeveld AR (1991) The occurrence of Zaprionus sensu stricto in the Palearctic region (Diptera: Drosophilidae). Ann Soc Entomol Fr 27:495–496

    Google Scholar 

  • Chassagnard MT, Tsacas L (1993) The subgenus Zaprionus s. str. Definition of species groups and revision of the Vittiger subgroup (Diptera, Drosophilidae). Ann Soc Entomol Fr 29:173–194

    Google Scholar 

  • Chen P, Wiley EO, Menyset KM (2007) Ecological niche modelling as a predictive tool: silver and bighead carps in North America. Biol Invasions 9:43–51

    Article  Google Scholar 

  • David JR, Allemand R, van Herrewege J et al (1983) Ecophysiology: abiotic factors. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila. Academic Press, New York, pp 105–170

    Google Scholar 

  • David JR, Araripe LO, Bitner-Mathe BC et al (2006) Quantitative trait analysis and geographic variability of natural populations of Zaprionus indianus, a recent invader in Brazil. Heredity 96:53–62

    CAS  PubMed  Google Scholar 

  • DeMarco P, Diniz-Filho JAF, Bini LM (2008) Spatial analysis improves species distribution modelling during range expansion. Biol Lett 4:577–580

    Article  Google Scholar 

  • Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87:1359–1367

    Article  PubMed  Google Scholar 

  • Ehrlich PR (1986) Which animal will invade? In: Mooney HA, Drake JA (eds) Ecology of biological invasions of North America and Hawaii. Springer, New York, pp 79–95

    Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol Model 160:115–130

    Article  CAS  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders NJ et al (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Fitzpatrick MC, Dunn RR, Sanders NJ (2008) Data set matter, but so do evolution and ecology. Glob Ecol Biogeogr 17:562–565

    Article  Google Scholar 

  • Gilchrist GW, Huey RB, Serra L (2001) Rapid evolution of wing size clines in Drosophila subobscura. Genetica 112:273–286

    Article  PubMed  Google Scholar 

  • Giovanelli JGR, Haddad CFB, Alexandrino J (2008) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol Invasions 10:585–590

    Article  Google Scholar 

  • GISP (2008) The global invasive species programme. Available at http://www.gisp.org/. Accessed Sept 2008

  • Goñi B, Fresia P, Calvino M et al (2001) First record of Zaprionus indianus Gupta, 1970 (Diptera, Drosophilidae) in southern localities of Uruguay. Drosoph Inf Serv 84:61–65

    Google Scholar 

  • Grossfield J (1978) Non sexual behaviour of Drosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila. Academic Press, New York, pp 1–126

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Huey R, Gilchrist G, Hendry A (2005) Using invasive species to study evolution. In: Sax D, Stachowicz J, Gaines D (eds) Species invasions: insights into ecology, evolution & biogeography. Sinauer Associates, Sunderland, pp 139–184

    Google Scholar 

  • Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Jong G, Bochdanovits Z (2003) Latitudinal clines in Drosophila melanogaster: body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway. J Genet 82:207–223

    Article  PubMed  Google Scholar 

  • Karan D, Moreteau B, David JR (1999) Growth temperature and reaction norms of morphometrical traits in a tropical drosophilid: Zaprionus indianus. Heredity 83:398–407

    Article  PubMed  Google Scholar 

  • Karan D, Dubey S, Moreteau B et al (2000) Geographical clines for quantitative traits in natural populations of a tropical drosophilid: Zaprionus indianus. Genetica 108:91–100

    Article  CAS  PubMed  Google Scholar 

  • Lambrinos JG (2004) How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 85:2061–2070

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lobo JM, Jimenez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1007

    Article  PubMed  Google Scholar 

  • Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modeling. Diver Distr 15:59–69

    Article  Google Scholar 

  • Meynard CN, Quinn JF (2007) Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J Biogeogr 34:1455–1469

    Article  Google Scholar 

  • Nava DE, Nascimento AM, Stein CP et al (2007) Biology, thermal requirements, and estimation of the number of generations of Zaprionus indianus (Diptera: Drosophilidae) for the main fig producing regions of Brazil. Fla Entomol 90:495–501

    Article  Google Scholar 

  • Parkash R, Yadav JP (1993) Geographical clinal variation at 7 esterase-coding loci in Indian populations of Zaprionus indianus. Hereditas 119:161–170

    Article  CAS  PubMed  Google Scholar 

  • Pearman PB, Guisan A, Broennimann O et al (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT (2007) Why not why where: the need for more complex models of simpler environmental spaces. Ecol Model 203:527–530

    Article  Google Scholar 

  • Peterson AT, Nakazawa Y (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Glob Ecol Biogeogr 17:135–144

    Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Article  Google Scholar 

  • Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  CAS  PubMed  Google Scholar 

  • Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560

    Google Scholar 

  • Peterson AT, Papes M, Soberon J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Roura-Pascual N, Brotons L, Peterson AT, Thuiller W (2009) Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian peninsula. Biol Invasions 11:1017–1031

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Ann Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH et al (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471

    Article  PubMed  Google Scholar 

  • Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568

    Article  Google Scholar 

  • Silva NM, Fantinel CD, Valente VLS et al (2005) Population dynamics of the invasive species Zaprionus indianus (Gupta) (Diptera: Drosophilidae) in communities of drosophilids of Porto Alegre city, southern of Brazil. Neotrop Entoml 34:363–374

    Google Scholar 

  • Soberon J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Steiner FM, Schlick-Steiner BC, VanDerWal J et al (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Divers Distrib 14:538–545

    Article  Google Scholar 

  • Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: A robust and informative method of data analysis. Math Comput Simul 33:385–390

    Article  Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology, and geography of Drosophila. Invertebrates of genetic interest. Plenum Press, New York, pp 421–469

    Google Scholar 

  • Thuiller W (2007) Biodiversity—climate change and the ecologist. Nature 448:550–552

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Richardson DM, Pysek P et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250

    Article  Google Scholar 

  • Tidon R, Leite DF, Leão BFD (2003) Impact of the colonization of Zaprionus (Diptera, Drosophilidae) in different ecosystems of the Neotropical region: 2 years after the invasion. Biol Conserv 112:299–305

    Article  Google Scholar 

  • Tsoar A, Allouche O, Steinitz O et al (2007) A comparative evaluation of presence only methods for modelling species distribution. Diver Distrib 13:397–405

    Article  Google Scholar 

  • Van Der Linde K, Steck GJ, Hibbard K et al (2006) First records of Zaprionus indianus (Diptera: Drosophilidae), a pest species on commercial fruits from Panama and the United States of America. Fla Entomol 89:402–404

    Article  Google Scholar 

  • Vilela CR (1999) Is Zaprionus indianus Gupta, 1970 (Diptera, Drosophilidae) currently colonizing the Neotropical region? Drosoph Inf Serv 82:37–39

    Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: Integrating evolution, ecology, and conservation biology. Ann Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Stephen Harris, from Oxford University, and one anonymous reviewer for the critical reading of this manuscript and to Paulo Oliveira de Souza for helping with sampling data. The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) has provided R. A. Mata with a 1 year Pos-Doctoral fellowship (CNPq proc. 155203/2006-1). Work by J. A. F. Diniz-Filho, P. D. Marco Jr., and R. Tidon have been continuously supported by CNPq productivity fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alexandre Felizola Diniz-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Mata, R.A., Tidon, R., Côrtes, L.G. et al. Invasive and flexible: niche shift in the drosophilid Zaprionus indianus (Insecta, Diptera). Biol Invasions 12, 1231–1241 (2010). https://doi.org/10.1007/s10530-009-9542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-009-9542-0

Keywords

Navigation