Skip to main content
Log in

A Parallel Excitation Based Fluorescence Molecular Tomography System for Whole-Body Simultaneous Imaging of Small Animals

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Challenges remain in imaging complete dynamic physiological processes in vivo through the whole small animal body using fluorescence molecular tomography (FMT). In this article, a novel non-contact full-angle FMT system that enables whole-body simultaneous imaging of small animals is presented. The whole-body simultaneous imaging ability is achieved by employing a line-shaped parallel excitation source, which can provide extended spatial sampling dataset to reconstruct multiple fluorescent targets distributed in whole animal body during one full-angle FMT imaging process. The key performances of this system were evaluated by a series of experiments. Quantitation linearity for over two orders of magnitude of fluorescence markers concentration was demonstrated, and an accessible simultaneous imaging domain of 4.0 × 1.5 cm2 could be achieved utilizing the parallel excitation pattern. Moreover, the in vivo imaging feasibility and performance were validated by localizing two fluorescent targets implanted at different positions of a nude mouse. The results suggest that compared with conventional single point excitation FMT system, the proposed system can achieve a whole-body simultaneous imaging domain and impart the ability to image complete dynamic physiological processes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Altinoğlu, E. I., T. J. Russin, J. M. Kaiser, B. M. Barth, P. C. Eklund, M. Kester, and J. H. Adair. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano. 2(10):2075–2084, 2008.

    Article  PubMed  Google Scholar 

  2. Deliolanis, N. C., J. Dunham, T. Wurdinger, J. L. Figueiredo, T. Bakhos, and V. Ntziachristos. In vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography. J. Biomed. Opt. 14(3):030509, 2009.

    Article  PubMed  Google Scholar 

  3. Deliolanis, N., T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos. Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections. Opt. Lett. 32(4):382–384, 2007.

    Article  PubMed  Google Scholar 

  4. Deliolanis, N., T. Lasser, M. Niedre, A. Soubret, and V. Ntziachristos. In vivo lung cancer imaging in mice using 360 degrees free-space fluorescence molecular tomography. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:2370–2372, 2006.

    Article  PubMed  Google Scholar 

  5. Garofalakis, A., G. Zacharakis, H. Meyer, E. N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll. Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography. Mol. Imaging 6(2):96–107, 2007.

    PubMed  Google Scholar 

  6. Gotoh, K., T. Yamada, O. Ishikawa, H. Takahashi, H. Eguchi, M. Yano, H. Ohigashi, Y. Tomita, Y. Miyamoto, and S. Imaoka. A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J. Surg. Oncol. 100(1):75–79, 2009.

    Article  PubMed  Google Scholar 

  7. Graves, E. E., J. Ripoll, R. Weissleder, and V. Ntziachristos. A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med. Phys. 30(5):901–911, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Graves, E. E., R. Weissleder, and V. Ntziachristos. Fluorescence molecular imaging of small animal tumor models. Curr. Mol. Med. 4(4):419–430, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Haller, J., D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos. Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging. J. Appl. Physiol. 104(3):795–802, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Hu, G., J. J. Yao, and J. Bai. Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals. Prog. Nat. Sci. 18(6):707–711, 2008.

    Article  Google Scholar 

  11. Hyde, D., R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos. Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model. Neuroimage 44(4):1304–1311, 2009.

    Article  PubMed  Google Scholar 

  12. Hyde, D., E. L. Miller, D. H. Brooks, and V. Ntziachristos. Data specific spatially varying regularization for multimodal fluorescence molecular tomography. IEEE Trans. Med. Imaging 29(2):365–374, 2010.

    Article  PubMed  Google Scholar 

  13. Joshi, A., W. Bangerth, and E. M. Sevick-Muraca. Adaptive finite element based tomography for fluorescence optical imaging in tissue. Opt. Express 12(22):5402–5417, 2004.

    Article  PubMed  Google Scholar 

  14. Kitai, T., T. Inomoto, M. Miwa, and T. Shikayama. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 12(3):211–215, 2005.

    Article  PubMed  Google Scholar 

  15. Liu, X., D. Wang, F. Liu, and J. Bai. Principal component analysis of dynamic fluorescence diffuse optical tomography images. Opt. Express 18(6):6300–6314, 2010.

    Article  CAS  PubMed  Google Scholar 

  16. Luker, G., and K. Luker. Optical imaging: current applications and future directions. J. Nucl. Med. 49(1):1–4, 2008.

    Article  PubMed  Google Scholar 

  17. Meyer, H., A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll. Noncontact optical imaging in mice with full angular coverage and automatic surface extraction. Appl. Opt. 46(17):3617–3627, 2007.

    Article  PubMed  Google Scholar 

  18. Miyashiro, I., N. Miyoshi, M. Hiratsuka, K. Kishi, T. Yamada, M. Ohue, H. Ohigashi, M. Yano, O. Ishikawa, and S. Imaoka. Detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging: comparison with infrared imaging. Ann. Surg. Oncol. 15(6):1640–1643, 2008.

    Article  PubMed  Google Scholar 

  19. Montet, X., J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder. Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242(3):751–758, 2007.

    Article  PubMed  Google Scholar 

  20. Montet, X., V. Ntziachristos, J. Grimm, and R. Weissleder. Tomographic fluorescence mapping of tumor targets. Cancer Res. 65(14):6330–6336, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Ntziachristos, V. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8:1–33, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Ntziachristos, V., J. Ripoll, L. V. Wang, and R. Weissleder. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23(3):313–320, 2005.

    Article  CAS  PubMed  Google Scholar 

  23. Ntziachristos, V., E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc. Natl Acad. Sci. USA 101(33):12294–12299, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Ntziachristos, V., C. H. Tung, C. Bremer, and R. Weissleder. Fluorescence molecular tomography resolves protease activity in vivo. Nat. Med. 8(7):757–760, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Ntziachristos, V., and R. Weissleder. Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media. Med. Phys. 29(5):803–809, 2002.

    Article  PubMed  Google Scholar 

  26. O’Leary, M. A., D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh. Fluorescence lifetime imaging in turbid media. Opt. Lett. 21(2):158–160, 1996.

    Article  PubMed  Google Scholar 

  27. Patwardhan, S., S. Bloch, S. Achilefu, and J. Culver. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice. Opt. Express 13(7):2564–2577, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Rudin, M., and R. Weissleder. Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov. 2(2):123–131, 2003.

    Article  CAS  PubMed  Google Scholar 

  29. Schulz, R. B., A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos. Hybrid system for simultaneous fluorescence and x-ray computed tomography. IEEE Trans. Med. Imaging 29(2):465–473, 2010.

    Article  PubMed  Google Scholar 

  30. Schweiger, M., S. R. Arridge, M. Hiraoka, and D. T. Delpy. The finite element method for the propagation of light in scattering media: boundary and source conditions. Med. Phys. 22(11):1779–1792, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Song, X., D. Wang, N. Chen, J. Bai, and H. Wang. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm. Opt. Express 15(26):18300–18317, 2007.

    Article  PubMed  Google Scholar 

  32. Soubret, A., J. Ripoll, and V. Ntziachristos. Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio. IEEE Trans. Med. Imaging 24(10):1377–1386, 2005.

    Article  PubMed  Google Scholar 

  33. Wang, D. F., X. Liu, and J. Bai. Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination. Opt. Express 17(24):21376–21395, 2009.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, D. F., X. Liu, Y. Chen, and J. Bai. In vivo fluorescence molecular tomography based on optimal small animal surface reconstruction. Chin. Opt. Lett. 8(1):82–85, 2010.

    Article  Google Scholar 

  35. Withrow, K. P., J. P. Gleysteen, A. Safavy, J. Skipper, R. A. Desmond, K. Zinn, and E. L. Rosenthal. Assessment of indocyanine green-labeled cetuximab to detect xenografted head and neck cancer cell lines. Otolaryngol. Head Neck Surg. 137(5):729–734, 2007.

    Article  PubMed  Google Scholar 

  36. Zhang, H., H. Li, G. Hu, G. S. Hu, and J. Bai. Micro-CT in a dual-modality fluorescence/computed tomography system for small animal imaging. IEEE Nucl. Sci. Symp. Conf. Rec. 3735–3737, 2007.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 60831003, 30930092, 30872633; the Tsinghua-Yue-Yuen Medical Science Foundation; the National Basic Research Program of China (973) under Grant No. 2006CB705700; the National High-Tech Research and Development Program of China (863) under Grant No. 2006AA020803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Bai.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Liu, X., Wang, D. et al. A Parallel Excitation Based Fluorescence Molecular Tomography System for Whole-Body Simultaneous Imaging of Small Animals. Ann Biomed Eng 38, 3440–3448 (2010). https://doi.org/10.1007/s10439-010-0093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0093-4

Keywords

Navigation