Skip to main content

Advertisement

Log in

Near-infrared II theranostic agents for the diagnosis and treatment of Alzheimer’s disease

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

Near-infrared II theranostic agents have gained great momentum in the research field of AD owing to the appealing advantages. Recently, an array of activatable NIR-II fluorescence probes has been developed to specifically monitor pathological targets of AD. Furthermore, various NIR-II-mediated nanomaterials with desirable photothermal and photodynamic properties have demonstrated favorable outcomes in the management of AD.

Methods

We summerized amounts of references and focused on small-molecule probes, nanomaterials, photothermal therapy, and photodynamic therapy based on NIR-II fluorescent imaging for the diagnosis and treatment in AD. In addition, design strategies for NIR-II-triggered theranostics targeting AD are presented, and some prospects are also addressed.

Results

NIR-II theranostic agents including small molecular probes and nanoparticles have received the increasing attention for biomedical applications. Meanwhile, most of the theranostic agents exhibited the promising results in animal studies. To our surprise, the multifunctional nanoplatforms also show a great potential in the diagnosis and treatment of AD.

Conclusions

Although NIR-II theranostic agents showed the great potential in diagnosis and treatment of AD, there are still many challenges: 1) Faborable NIR-II fluorohpores are still lacking; 2) Biocompatibility, bioseurity and dosage of NIR-II theranostic agents should be further revealed; 3) New equipment and software associated with NIR-II imaging system should be explored.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. World Population Prospects: The 2017 Revision. Untied Nations. June 21, 2017. https://www.un.org/zh/desa/world-population-prospects-2017-revision.

  2. Guerchet M, Prince M, Prina M. Numbers of people with dementia worldwide. Alzheimer's Disease International (ADI). November 30, 2020. https://www.alzint.org/resource/numbers-of-people-with-dementia-worldwide/.

  3. Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s Dementia. 2023;19:658–70. https://doi.org/10.1002/alz.12694.

    Article  PubMed  Google Scholar 

  4. El-Gamal F, Elmogy MM, Ghazal M, Atwan A, Casanova MF, Barnes GN, et al. Medical imaging diagnosis of early Alzheimer’s disease. Frontiers in bioscience (Landmark edition). 2018;23:671–725. https://doi.org/10.2741/4612.

    Article  Google Scholar 

  5. Li S, He H, Cui W, Gu B, Li J, Qi Z, et al. Detection of Aβ plaques by a novel specific MRI probe precursor CR-BSA-(Gd-DTPA)n in APP/PS1 transgenic mice. Anatomical record (Hoboken, NJ 2007). 2010;293:2136–43. https://doi.org/10.1002/ar.21209.

    Article  CAS  Google Scholar 

  6. Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Macura SI, et al. Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis. 2002;11:315–29. https://doi.org/10.1006/nbdi.2002.0550.

    Article  CAS  PubMed  Google Scholar 

  7. Koo J, Byun Y. Current status of PET-imaging probes of β-amyloid plaques. Arch Pharmacal Res. 2013;36:1178–84. https://doi.org/10.1007/s12272-013-0193-4.

    Article  CAS  Google Scholar 

  8. Zhu L, Ploessl K, Kung HF. PET/SPECT imaging agents for neurodegenerative diseases. Chem Soc Rev. 2014;43:6683–91. https://doi.org/10.1039/c3cs60430f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang J, Cheng R, Fu H, Yang J, Kumar M, Lu J, et al. Half-curcumin analogues as PET imaging probes for amyloid beta species. Chem Commun (Camb). 2019;55:3630–3. https://doi.org/10.1039/c8cc10166c.

    Article  CAS  PubMed  Google Scholar 

  10. Staderini M, Martín MA, Bolognesi ML, Menéndez JC. Imaging of β-amyloid plaques by near infrared fluorescent tracers: a new frontier for chemical neuroscience. Chem Soc Rev. 2015;44:1807–19. https://doi.org/10.1039/c4cs00337c.

    Article  CAS  PubMed  Google Scholar 

  11. Yang J, Zeng F, Ge Y, Peng K, Li X, Li Y, et al. Development of near-infrared fluorescent probes for use in Alzheimer’s disease diagnosis. Bioconjug Chem. 2020;31:2–15. https://doi.org/10.1021/acs.bioconjchem.9b00695.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent diagnostic probes in neurodegenerative diseases. Advanced materials (Deerfield Beach, Fla). 2020;32: e2001945. https://doi.org/10.1002/adma.202001945.

    Article  CAS  PubMed  Google Scholar 

  13. Su D, Diao W, Li J, Pan L, Zhang X, Wu X, et al. Strategic design of amyloid-β species fluorescent probes for Alzheimer’s disease. ACS Chem Neurosci. 2022;13:540–51. https://doi.org/10.1021/acschemneuro.1c00810.

    Article  CAS  PubMed  Google Scholar 

  14. Kahlke T, Umbers KDL. Bioluminescence. Curr Biol. 2016;26:R313–4. https://doi.org/10.1016/j.cub.2016.01.007.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang DY, Singhal S, Lee JYK. Optical principles of fluorescence-guided brain tumor surgery: a practical primer for the neurosurgeon. Neurosurgery. 2019;85:312–24. https://doi.org/10.1093/neuros/nyy315.

    Article  PubMed  Google Scholar 

  16. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008;452:580–9. https://doi.org/10.1038/nature06917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang CC, Huang HB, Tsay HJ, Shiao MS, Wu WJ, Cheng YC, et al. Characterization of Aβ aggregation mechanism probed by Congo red. J Biomol Struct Dyn. 2012;30:160–9. https://doi.org/10.1080/07391102.2012.677767.

    Article  CAS  PubMed  Google Scholar 

  18. Rodríguez-Rodríguez C, Rimola A, Rodríguez-Santiago L, Ugliengo P, Alvarez-Larena A, Gutiérrez-de-Terán H, et al. Crystal structure of thioflavin-T and its binding to amyloid fibrils: insights at the molecular level. Chem Commun (Camb). 2010;46:1156–8. https://doi.org/10.1039/b912396b.

    Article  CAS  PubMed  Google Scholar 

  19. Biancalana M, Koide S. Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochem Biophys Acta. 2010;1804:1405–12. https://doi.org/10.1016/j.bbapap.2010.04.001.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Liu T, Zhang E, Luo S, Tan X, Shi C. Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells. Biomaterials. 2014;35:4116–24. https://doi.org/10.1016/j.biomaterials.2014.01.061.

    Article  CAS  PubMed  Google Scholar 

  21. Yan JW, Zhu JY, Zhou KX, Wang JS, Tan HY, Xu ZY, et al. Neutral merocyanine dyes: for in vivo NIR fluorescence imaging of amyloid-β plaques. Chem Commun (Camb). 2017;53:9910–3. https://doi.org/10.1039/c7cc05056a.

    Article  CAS  PubMed  Google Scholar 

  22. Yang HL, Fang SQ, Tang YW, Wang C, Luo H, Qu LL, et al. A hemicyanine derivative for near-infrared imaging of β-amyloid plaques in Alzheimer’s disease. Eur J Med Chem. 2019;179:736–43. https://doi.org/10.1016/j.ejmech.2019.07.005.

    Article  CAS  PubMed  Google Scholar 

  23. Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev. 2007;107:4891–932. https://doi.org/10.1021/cr078381n.

    Article  CAS  PubMed  Google Scholar 

  24. Ojida A, Sakamoto T, Inoue MA, Fujishima SH, Lippens G, Hamachi I. Fluorescent BODIPY-based Zn(II) complex as a molecular probe for selective detection of neurofibrillary tangles in the brains of Alzheimer’s disease patients. J Am Chem Soc. 2009;131:6543–8. https://doi.org/10.1021/ja9008369.

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe H, Ono M, Matsumura K, Yoshimura M, Kimura H, Saji H. Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes. Mol Imaging. 2013;12:338–47.

    Article  CAS  PubMed  Google Scholar 

  26. Cui M, Ono M, Watanabe H, Kimura H, Liu B, Saji H. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J Am Chem Soc. 2014;136:3388–94. https://doi.org/10.1021/ja4052922.

    Article  CAS  PubMed  Google Scholar 

  27. Fu H, Tu P, Zhao L, Dai J, Liu B, Cui M. Amyloid-β deposits target efficient near-infrared fluorescent probes: synthesis, in vitro evaluation, and in vivo imaging. Anal Chem. 2016;88:1944–50. https://doi.org/10.1021/acs.analchem.5b04441.

    Article  CAS  PubMed  Google Scholar 

  28. Kepp KP. Bioinorganic chemistry of Alzheimer’s disease. Chem Rev. 2012;112:5193–239. https://doi.org/10.1021/cr300009x.

    Article  CAS  PubMed  Google Scholar 

  29. Yang J, Zhang X, Yuan P, Yang J, Xu Y, Grutzendler J, et al. Oxalate-curcumin-based probe for micro- and macroimaging of reactive oxygen species in Alzheimer’s disease. Proc Natl Acad Sci USA. 2017;114:12384–9. https://doi.org/10.1073/pnas.1706248114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Tian Y, Li Z, Tian X, Sun H, Liu H, et al. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer’s disease. J Am Chem Soc. 2013;135:16397–409. https://doi.org/10.1021/ja405239v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Tian Y, Zhang C, Tian X, Ross AW, Moir RD, et al. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc Natl Acad Sci USA. 2015;112:9734–9. https://doi.org/10.1073/pnas.1505420112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang H, Zeng F, Luo Y, Zheng C, Ran C, Yang J. Curcumin scaffold as a multifunctional tool for Alzheimer’s disease research. Molecules (Basel, Switzerland). 2022;27:3879. https://doi.org/10.3390/molecules27123879.

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Yang J, Liu H, Yang J, Du L, Feng H, et al. Tuning the stereo-hindrance of a curcumin scaffold for the selective imaging of the soluble forms of amyloid beta species. Chem Sci. 2017;8:7710–7. https://doi.org/10.1039/c7sc02050c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Zhuang D, Wang J, Huang H, Li R, Wu C, et al. Recent advances in small molecular near-infrared fluorescence probes for a targeted diagnosis of the Alzheimer disease. Analyst. 2022;147:4701–23. https://doi.org/10.1039/d2an01327d.

    Article  CAS  PubMed  Google Scholar 

  35. Kenry, Duan Y, Liu B. Recent advances of optical imaging in the second near-infrared window. Advanced materials (Deerfield Beach, Fla). 2018;30:e1802394. https://doi.org/10.1002/adma.201802394.

    Article  CAS  PubMed  Google Scholar 

  36. Liu W, Dong X, Liu Y, Sun Y. Photoresponsive materials for intensified modulation of Alzheimer’s amyloid-beta protein aggregation: a review. Acta Biomater. 2021;123:93–109. https://doi.org/10.1016/j.actbio.2021.01.018.

    Article  CAS  PubMed  Google Scholar 

  37. Ma M, Gao N, Sun Y, Du X, Ren J, Qu X. Redox-activated near-infrared-responsive polyoxometalates used for photothermal treatment of Alzheimer’s disease. Adv Healthcare Mater. 2018;7: e1800320. https://doi.org/10.1002/adhm.201800320.

    Article  CAS  Google Scholar 

  38. Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17:657–74. https://doi.org/10.1038/s41571-020-0410-2.

    Article  PubMed  Google Scholar 

  39. Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, et al. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials today Bio. 2020;5: 100035. https://doi.org/10.1016/j.mtbio.2019.100035.

    Article  CAS  PubMed  Google Scholar 

  40. Hamblin MR. Photobiomodulation for Alzheimer’s disease: has the light dawned? Photonics. 2019;6:77. https://doi.org/10.3390/photonics6030077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee BI, Chung YJ, Park CB. Photosensitizing materials and platforms for light-triggered modulation of Alzheimer’s β-amyloid self-assembly. Biomaterials. 2019;190–191:121–32. https://doi.org/10.1016/j.biomaterials.2018.10.043.

    Article  CAS  PubMed  Google Scholar 

  42. Zeng F, Peng K, Han L, Yang J. Photothermal and photodynamic therapies via NIR-activated nanoagents in combating Alzheimer’s disease. ACS Biomater Sci Eng. 2021;7:3573–85. https://doi.org/10.1021/acsbiomaterials.1c00605.

    Article  CAS  PubMed  Google Scholar 

  43. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. European journal of neurology. 2018;25:59–70. https://doi.org/10.1111/ene.13439.

    Article  CAS  PubMed  Google Scholar 

  44. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science (New York, NY). 2002;297:353–6. https://doi.org/10.1126/science.1072994.

    Article  CAS  Google Scholar 

  45. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science (New York, NY). 2007;316:750–4. https://doi.org/10.1126/science.1141736.

    Article  CAS  Google Scholar 

  46. Walton CC, Begelman D, Nguyen W, Andersen JK. Senescence as an amyloid cascade: the amyloid senescence hypothesis. Front Cell Neurosci. 2020;14:129. https://doi.org/10.3389/fncel.2020.00129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cai XD, Golde TE, Younkin SG. Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science (New York, NY). 1993;259:514–6. https://doi.org/10.1126/science.8424174.

    Article  CAS  Google Scholar 

  48. Wisniewski T, Ghiso J, Frangione B. Peptides homologous to the amyloid protein of Alzheimer’s disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. Biochem Biophys Res Commun. 1991;179:1247–54. https://doi.org/10.1016/0006-291x(91)91706-i.

    Article  CAS  PubMed  Google Scholar 

  49. Liu H, Yang J, Wang L, Xu Y, Zhang S, Lv J, et al. Targeting β-amyloid plaques and oligomers: development of near-IR fluorescence imaging probes. Future Med Chem. 2017;9:179–98. https://doi.org/10.4155/fmc-2016-0185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Paranjape GS, Terrill SE, Gouwens LK, Ruck BM, Nichols MR. Amyloid-β(1–42) protofibrils formed in modified artificial cerebrospinal fluid bind and activate microglia. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2013;8:312–22. https://doi.org/10.1007/s11481-012-9424-6.

    Article  PubMed  Google Scholar 

  51. He N, Jin WL, Lok KH, Wang Y, Yin M, Wang ZJ. Amyloid-β(1–42) oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2. Cell Death Dis. 2013;4: e924. https://doi.org/10.1038/cddis.2013.437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhat R, Crowe EP, Bitto A, Moh M, Katsetos CD, Garcia FU, et al. Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE. 2012;7: e45069. https://doi.org/10.1371/journal.pone.0045069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomed. 2016;11:5381–414. https://doi.org/10.2147/ijn.S117210.

    Article  CAS  Google Scholar 

  54. Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci USA. 2015;112:12486–91. https://doi.org/10.1073/pnas.1517048112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiong B, Wang Y, Chen Y, Xing S, Liao Q, Chen Y, et al. Strategies for structural modification of small molecules to improve blood-brain barrier penetration: a recent perspective. J Med Chem. 2021;64:13152–73. https://doi.org/10.1021/acs.jmedchem.1c00910.

    Article  CAS  PubMed  Google Scholar 

  56. Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, et al. Overcoming blood-brain barrier transport: advances in nanoparticle-based drug delivery strategies. Materials today (Kidlington, England). 2020;37:112–25. https://doi.org/10.1016/j.mattod.2020.02.001.

    Article  CAS  PubMed  Google Scholar 

  57. Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64:640–65. https://doi.org/10.1016/j.addr.2011.11.010.

    Article  CAS  PubMed  Google Scholar 

  58. Chan J, Dodani SC, Chang CJ. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem. 2012;4:973–84. https://doi.org/10.1038/nchem.1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Benson S, Fernandez A, Barth ND, de Moliner F, Horrocks MH, Herrington CS, et al. SCOTfluors: small, conjugatable, orthogonal, and tunable fluorophores for in vivo imaging of cell metabolism. Angew Chem Int Ed Engl. 2019;58:6911–5. https://doi.org/10.1002/anie.201900465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Advanced materials (Deerfield Beach, Fla). 2018;30:e1802546 https://doi.org/10.1002/adma.201802546.

  61. Li X, Gao X, Shi W, Ma H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev. 2014;114:590–659. https://doi.org/10.1021/cr300508p.

    Article  CAS  PubMed  Google Scholar 

  62. Ding C, Ren T. Near infrared fluorescent probes for detecting and imaging active small molecules. Coord Chem Rev. 2023;482: 215080. https://doi.org/10.1016/j.ccr.2023.215080.

    Article  CAS  Google Scholar 

  63. Ren TB, Wang ZY, Xiang Z, Lu P, Lai HH, Yuan L, et al. A general strategy for development of activatable NIR-II fluorescent probes for in vivo high-contrast bioimaging. Angew Chem Int Ed Engl. 2021;60:800–5. https://doi.org/10.1002/anie.202009986.

    Article  CAS  PubMed  Google Scholar 

  64. Liu X, Yu B, Shen Y, Cong H. Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coordination Chemistry Reviews. 2022;468:214609. https://doi.org/10.1016/j.ccr.2022.214609.

  65. Lei Z, Zhang F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew Chem Int Ed Engl. 2021;60:16294–308. https://doi.org/10.1002/anie.202007040.

    Article  CAS  PubMed  Google Scholar 

  66. Miao J, Miao M, Jiang Y, Zhao M, Li Q, Zhang Y, et al. An activatable NIR-II fluorescent reporter for in vivo imaging of amyloid-β Plaques. Angew Chem Int Ed Engl. 2023;62: e202216351. https://doi.org/10.1002/anie.202216351.

    Article  CAS  PubMed  Google Scholar 

  67. Godard A, Kalot G, Pliquett J, Busser B, Le Guével X, Wegner KD, et al. Water-soluble Aza-BODIPYs: biocompatible organic dyes for high contrast in vivo NIR-II imaging. Bioconjug Chem. 2020;31:1088–92. https://doi.org/10.1021/acs.bioconjchem.0c00175.

    Article  CAS  PubMed  Google Scholar 

  68. Zhou H, Zeng X, Li A, Zhou W, Tang L, Hu W, et al. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nat Commun. 2020;11:6183. https://doi.org/10.1038/s41467-020-19945-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li H, Wang J, Li Y, Chen X, Zhang W, Zhao Y, et al. Detection of Aβ oligomers in early Alzheimer’s disease diagnose by in vivo NIR-II fluorescence imaging. Sens Actuators, B Chem. 2022;358: 131481. https://doi.org/10.1016/j.snb.2022.131481.

    Article  CAS  Google Scholar 

  70. Zhang W, Wang W, Yu DX, Xiao Z, He Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine (Lond). 2018;13:2341–71. https://doi.org/10.2217/nnm-2018-0163.

    Article  CAS  PubMed  Google Scholar 

  71. Koike S, Ando C, Usui Y, Kibune Y, Nishimoto S, Suzuki T, et al. Age-related alteration in the distribution of methylglyoxal and its metabolic enzymes in the mouse brain. Brain Res Bull. 2019;144:164–70. https://doi.org/10.1016/j.brainresbull.2018.11.025.

    Article  CAS  PubMed  Google Scholar 

  72. Wong A, Lüth HJ, Deuther-Conrad W, Dukic-Stefanovic S, Gasic-Milenkovic J, Arendt T, et al. Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 2001;920:32–40. https://doi.org/10.1016/s0006-8993(01)02872-4.

    Article  CAS  PubMed  Google Scholar 

  73. Yang M, Fan J, Zhang J, Du J, Peng X. Visualization of methylglyoxal in living cells and diabetic mice model with a 1,8-naphthalimide-based two-photon fluorescent probe. Chem Sci. 2018;9:6758–64. https://doi.org/10.1039/c8sc02578a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang H, Xu Y, Rao L, Yang C, Yuan H, Gao T, et al. Ratiometric fluorescent probe for monitoring endogenous methylglyoxal in living cells and diabetic blood samples. Anal Chem. 2019;91:5646–53. https://doi.org/10.1021/acs.analchem.8b05426.

    Article  CAS  PubMed  Google Scholar 

  75. Lai Y, Dang Y, Sun Q, Pan J, Yu H, Zhang W, et al. Design of an activatable NIR-II nanoprobe for the in vivo elucidation of Alzheimer’s disease-related variations in methylglyoxal concentrations. Chem Sci. 2022;13:12511–8. https://doi.org/10.1039/d2sc05242c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev. 2018;47:2280–97. https://doi.org/10.1039/c7cs00522a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ. In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem. 2003;278:11612–22. https://doi.org/10.1074/jbc.M210207200.

    Article  CAS  PubMed  Google Scholar 

  78. Kuk S, Lee BI, Lee JS, Park CB. Rattle-structured upconversion nanoparticles for near-IR-induced suppression of Alzheimer’s β-amyloid aggregation. Small (Weinheim an der Bergstrasse, Germany). 2017;13:1603139. https://doi.org/10.1002/smll.201603139.

  79. Wang J, Fan Y, Tan Y, Zhao X, Zhang Y, Cheng C, et al. Porphyrinic metal-organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s amyloid-β peptide. ACS Appl Mater Interfaces. 2018;10:36615–21. https://doi.org/10.1021/acsami.8b15452.

    Article  CAS  PubMed  Google Scholar 

  80. Li M, Guan Y, Zhao A, Ren J, Qu X. Using multifunctional peptide conjugated Au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer’s disease. Theranostics. 2017;7:2996–3006. https://doi.org/10.7150/thno.18459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ma M, Gao N, Li X, Liu Z, Pi Z, Du X, et al. A biocompatible second near-infrared nanozyme for spatiotemporal and non-invasive attenuation of amyloid deposition through scalp and skull. ACS Nano. 2020;14:9894–903. https://doi.org/10.1021/acsnano.0c02733.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang H, Hao C, Qu A, Sun M, Xu L, Xu C, et al. Light-induced chiral iron copper selenide nanoparticles prevent β-amyloidopathy in vivo. Angew Chem Int Ed Engl. 2020;59:7131–8. https://doi.org/10.1002/anie.202002028.

    Article  CAS  PubMed  Google Scholar 

  83. Guo B, Sheng Z, Hu D, Liu C, Zheng H, Liu B. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Advanced materials (Deerfield Beach, Fla). 2018;30: e1802591. https://doi.org/10.1002/adma.201802591.

    Article  CAS  PubMed  Google Scholar 

  84. Liu Y, Zhu D, Luo J, Chen X, Gao L, Liu W, et al. NIR-II-activated yolk-shell nanostructures as an intelligent platform for parkinsonian therapy. ACS Appl Bio Mater. 2020;3:6876–87. https://doi.org/10.1021/acsabm.0c00794.

    Article  CAS  PubMed  Google Scholar 

  85. Du C, Feng W, Dai X, Wang J, Geng D, Li X, et al. Cu(2+) -chelatable and ROS-scavenging MXenzyme as NIR-II-triggered blood-brain barrier-crossing nanocatalyst against Alzheimer’s disease. Small. 2022;18: e2203031. https://doi.org/10.1002/smll.202203031.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang H, Yu D, Liu S, Liu C, Liu Z, Ren J, et al. NIR-II hydrogen-bonded organic frameworks (HOFs) used for target-specific amyloid-β photooxygenation in an Alzheimer’s disease model. Angew Chem Int Ed Engl. 2022;61: e202109068. https://doi.org/10.1002/anie.202109068.

    Article  CAS  PubMed  Google Scholar 

  87. Yu D, Zhang H, Liu Z, Liu C, Du X, Ren J, et al. Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew Chem Int Ed Engl. 2022;61: e202201485. https://doi.org/10.1002/anie.202201485.

    Article  CAS  PubMed  Google Scholar 

  88. Le Bras A. New insights into the origin of amyloid plaques. Lab Animal. 2022;51:187. https://doi.org/10.1038/s41684-022-01007-x.

    Article  Google Scholar 

  89. Qiu Z, Cao G, Lv S, Yu D, Fu J, Yan H, et al. A novel AD theranostic platform with NIR-II laser controlled drug release and real-time monitoring of therapeutic outcomes. Chem Eng J. 2023;469:143882. https://doi.org/10.1016/j.cej.2023.143882.

  90. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012;41:2323–43. https://doi.org/10.1039/c1cs15188f.

    Article  CAS  PubMed  Google Scholar 

  91. Li L, He R, Yan H, Leng Z, Zhu S, Gu Z. Nanotechnology for the diagnosis and treatment of Alzheimer’s disease: a bibliometric analysis. Nano Today. 2022;47:101654. https://doi.org/10.1016/j.nantod.2022.101654.

  92. Ahmad F, Wang X, Li W. Toxico‐metabolomics of engineered nanomaterials: progress and challenges. Adv Funct Mater. 2019;29:1904268. https://doi.org/10.1002/adfm.201904268.

  93. Fischer HC, Chan WC. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol. 2007;18:565–71. https://doi.org/10.1016/j.copbio.2007.11.008.

    Article  CAS  PubMed  Google Scholar 

  94. Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, et al. The chemistry of organic contrast agents in the NIR-II window. Angew Chem Int Ed Engl. 2022;61: e202114722. https://doi.org/10.1002/anie.202114722.

    Article  CAS  PubMed  Google Scholar 

  95. Sun P, Chen Y, Sun B, Zhang H, Chen K, Miao H, et al. Thienothiadiazole-based NIR-II dyes with D-A-D structure for NIR-II fluorescence imaging systems. ACS Appl Bio Mater. 2021;4:4542–8. https://doi.org/10.1021/acsabm.1c00274.

    Article  CAS  PubMed  Google Scholar 

  96. Wang S, Shi H, Wang L, Loredo A, Bachilo SM, Wu W, et al. Photostable small-molecule NIR-II fluorescent scaffolds that cross the blood-brain barrier for noninvasive brain imaging. J Am Chem Soc. 2022;144:23668–76. https://doi.org/10.1021/jacs.2c11223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No.81971677) and Shanghai Natural Science Foundation (No.22ZR1424400).

Author information

Authors and Affiliations

Authors

Contributions

Xiao Li, Xingdang Liu, and Jian Yang had the idea for the article. Screening and selection of the literatures were performed by Can Zhou, Fantian Zeng, and Jian Yang. The first draft of the manuscript was written by Can Zhou, Fantian Zeng, and Jian Yang; all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiao Li, Xingdang Liu or Jian Yang.

Ethics declarations

Ethics approval

This is a review; no ethical approval is required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Can Zhou and Fantian Zeng contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Zeng, F., Yang, H. et al. Near-infrared II theranostic agents for the diagnosis and treatment of Alzheimer’s disease. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06690-1

Keywords

Navigation