Skip to main content

Advertisement

Log in

Simulation of temperature and thermally induced stress of human tooth under CO2 pulsed laser beams using finite element method

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The authors report the simulation of temperature distribution and thermally induced stresses of human tooth under CO2 pulsed laser beam. A detailed tooth structure comprising enamel, dentin, and pulp with realistic shapes and thicknesses were considered, and a numerical method of finite element was adopted to solve time-dependent bio-heat and stress equations. The realistic boundary conditions of constant temperature for those parts embedded in the gingiva and heat flux condition for those parts out of the gingiva were applied. The results which were achieved as a function of energy density (J/cm2) showed when laser beam is irradiated downward (from the top of the tooth), the temperature and thermal stresses decrease quickly as a function of depth that is a result of strong absorption of CO2 beams by enamel. This effect is so influential that one can use CO2 beams to remove micrometer layers while underlying tissues, especially the pulp, are safe from thermal effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494

    Article  Google Scholar 

  2. Goldman L, Hornby P, Meyer R, Goldman B (1964) Impact of the laser on dental caries. Nature 203:417

    Article  CAS  PubMed  Google Scholar 

  3. Chiang Y, Lee B, Wang Y, Cheng Y, Chen Y, Shiau J, Wang D, Lin C (2008) Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser. Lasers Med Sci 23:41–48

    Article  PubMed  Google Scholar 

  4. Wu C, Roan R, Chen J (2002) Sintering mechanism of the CaF2 on hydroxyapatite by a 10.6-μm CO2 Laser. Lasers Surg Med 31:333–338

    Article  PubMed  Google Scholar 

  5. Klocke A, Mihailova B, Zhang S, Gasharova B, Stosch R, Güttler B, Kahl-Nieke B, Henriot P, Ritschel B, Bismayer U (2007) CO2 laser-induced zonation in dental enamel: a Raman and IR microspectroscopic study. J Biomed Mater Res 81B:499–507. doi:10.1002/jbm.b.30690

    Article  CAS  Google Scholar 

  6. Zuerlein MJ, Fried D, Featherstone JD, Seka W (1999) Optical properties of dental enamel in the mid-IR determined by pulsed photothermal radiometry. IEEE J Sel Top Quant Electron 5:1083–1089. doi:10.1109/2944.796333

    Article  CAS  Google Scholar 

  7. Arrastia AMA, Wilder-Smith P, Berns MW (1995) Thermal effects of CO2 laser on the pulpal chamber and enamel of human primary teeth: an in vitro investigation. Lasers Surg Med 16:343–350

    Article  CAS  PubMed  Google Scholar 

  8. McCormack SM, Fried D, Featherstone JDB, Glena RE, Seka W (1995) Scanning electron microscope observations of CO2 laser effects on dental enamel. J Dent Res 74:1702–1708

    Article  CAS  PubMed  Google Scholar 

  9. Zuerlein MJ, Fried D, Seka W, Featherstone JDB (1998) Modeling thermal emission in dental enamel induced by 9–11 μm laser light. Appl Surf Sci 127–129:863–868

    Article  Google Scholar 

  10. Yamada MK, Uo M, Ohkawa S, Akasaka T, Watari F (2004) Three-dimensional topographic scanning electron microscope and Raman spectroscopic analyses of the irradiation effect on teeth by Nd:YAG, Er: YAG, and CO2 lasers. J Biomed Mater Res 71B:7–15. doi:10.1002/jbm.b.30063

    Article  CAS  Google Scholar 

  11. Lin CP, Lee BS, Kok SH, Lan WH, Tseng YC, Lin FH (2000) Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: thermal behavior and phase transformation of human tooth enamel and dentin after irradiation by CO2 laser. J Mater Sci Mater Med 11:373–381

    Article  CAS  PubMed  Google Scholar 

  12. Sasaki KM, Aoki A, Ichinose S, Ishikawa I (2002) Morphological analysis of cementum and root dentin after Er:YAG laser irradiation. Lasers Surg Med 31:79–85

    Article  PubMed  Google Scholar 

  13. Zhao FY, Zhang KH, Wu MJ, Zhou H (1989) Threshold irradiation dose for damage to dental pulp irradiated by a Nd:YAG laser. Lasers Med Sci 4:187–191

    Article  Google Scholar 

  14. Zhang C, Matsumoto K, Kimura Y, Harashima T, Takeda FH, Zhou H (1998) Effects of CO2 laser in treatment of cervical dentinal hypersensitivity. J Endod 24:595–597

    Article  CAS  PubMed  Google Scholar 

  15. Coutinho DS, Silveira L, Nicolau RA, Zanin F, Brugnera A (2009) Comparison of temperature increase in vitro human tooth pulp by different light sources in the dental whitening process. Lasers Med Sci 24:179–185

    Article  PubMed  Google Scholar 

  16. Kívia Correia Gama S, Martins de Araújo T, Luiz Barbosa Pinheiro A (2008) Benefits of the use of the CO2 laser in Orthodontics. Lasers Med Sci 23:459–465

    Article  Google Scholar 

  17. Jamjoum H, Pearson GJ, McDonald AV (1995) A comparative study of etching enamel by acid and laser. Lasers Med Sci 10:37–42

    Article  Google Scholar 

  18. Dunn WJ, Davis JT, Bush AC (2005) Shear bond strength and SEM evaluation of composite bonded to Er:YAG laser-prepared dentin and enamel. Dent Mater 21:616–624

    Article  CAS  PubMed  Google Scholar 

  19. Franklin SR, Chauhan P, Mitra A, Thareja RK (2005) Laser ablation of human tooth. J Appl Phys 97:094919

    Article  Google Scholar 

  20. Nair PNR, Baltensperger M, Luder HU, Eyrich GKH (2005) Observations on pulpal response to carbon dioxide laser drilling of dentine in healthy human third molars. Lasers Med Sci 19:240–247

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira V, Sivakumar M, Vilar R (2006) A mathematical description of surface texture development in laser-ablated dentin. J Appl Phys 100:104701

    Article  Google Scholar 

  22. Vo-Dinh T (Ed) (2003) Biomedical photonics handbook. CRC. ISBN: 978-0-8493-1116-1

  23. Xu HC, Lui WY, Wang T (1989) Measurement of thermal expansion coefficient of human teeth. Aust Dent J 34:530–535

    Article  CAS  PubMed  Google Scholar 

  24. González-Rodríguez A, López-González JD, Castillo JDL, Villalba-Moreno J (2011) Comparison of the effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation. Lasers Med Sci 26:317–324

    Article  PubMed  Google Scholar 

  25. Goodis HE, Fried D, Gansky S, Rechmann P, Featherstone JDB (2004) Pulpal safety of 9.6 μm TEA CO2 laser used for caries prevention. Lasers Surg Med 35:104–110

    Article  PubMed  Google Scholar 

  26. Rosa AD, Sarma AV, Le CQ, Jones RS, Fried D (2004) Analysis of peripheral thermal damage after laser irradiation of dentin using polarized light microscopy and synchrotron radiation infrared spectromicroscopy. Biomedical Optics 5313:31–40

    Google Scholar 

  27. Rosa AD, Sarma AV, Le CQ, Jones RS, Fried D (2004) Peripheral thermal and mechanical damage to dentin with microsecond and sub–microsecond 9.6, 2.79, and 0.355 μm laser pulses. Lasers Surg Med 35:214–228

    Article  Google Scholar 

  28. Avery JK (2001) Oral development and histology. Thieme, New York

    Google Scholar 

  29. Yazami H, Zeinoun T, Saba SB, Lamard L, Peremans A, Limme M, Geerts S, Lamy M, Nammour S (2010) Pulp temperature increase during photo-activated disinfection (PAD) of periodontal pockets: an in vitro study. Lasers Med Sci 25:655–659

    Article  PubMed  Google Scholar 

  30. Fried D, Glena RE, Featherstone JDB, Seka W (1997) Permanent and transient changes in the reflectance of CO2 laser-irradiated dental hard tissues at λ = 9.3, 9.6, 10.3 and 10.6 μ and at Fluences of 1-20 J/cm2. Lasers Surg Med 20:22–31

    Article  CAS  PubMed  Google Scholar 

  31. Sagi A, Segal T, Dagan J (1984) A numerical model for temperature distribution and thermal damage calculations in teeth exposed to a CO2 laser. Math Biosci 71:1–17

    Article  Google Scholar 

  32. Malmstrom HS, Mc Cormack SM, Fried D, Featherstone JDB (2001) Effect of CO2 laser on pulpal temperature and surface morphology: an in vitro study. J Dent 29:521–529

    Article  CAS  PubMed  Google Scholar 

  33. Prech P, Jancarek A, Gavrilov P, Key PH (1998) Temperature changes induced by low-energy CO2 laser irradiation in enamel. Laser Phys 8:336–339

    Google Scholar 

  34. Fried D, Zuerlein MJ, Le CQ, Featherstone JDB (2002) Thermal and chemical modification of dentin by 9–11 μm CO2 laser pulses of 5–100 μs duration. Lasers Surg Med 31:275–282

    Article  PubMed  Google Scholar 

  35. Sabaeian M (2012) Analytical solutions for anisotropic time-dependent heat equation with Robin boundary condition for cubic-shaped solid state laser crystals. Appl Opt 51:7150–7159

    Article  PubMed  Google Scholar 

  36. Sabaeian M, Nadgaran H, Mousave L (2008) Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser. App Opt 47:2317–2325

    Article  CAS  Google Scholar 

  37. Mousavi L, Sabaeian M, Nadgaran H (2013) Thermally-induced birefringence in solid-core photonic crystal fiber lasers. Opt Commun 300:69–76

    Article  CAS  Google Scholar 

  38. Clayman L, Kuo P (1997) Lasers in Maxillofacial surgery and Dentistry. Thieme

  39. Lin M, Xu F, Lu TJ, Bai BF (2010) A review of heat transfer in human tooth—experimental characterization and mathematical modeling. Dent Mater 26:501–513

    Article  PubMed  Google Scholar 

  40. Preiskorn M, Zmuda S, Trykowski J, Panas A, Preiskorn M (2003) In vitro investigations of the heat transfer phenomena in human tooth. Acta Bioeng Biomech 5(2):23–36

    Google Scholar 

  41. Magne P (2007) Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent Mater 23:539–548

    Article  CAS  PubMed  Google Scholar 

  42. Romeed SA, Malik R, Dunne SM (2012) Stress Analysis of Occlusal Forces in Canine Teeth and Their Role in the Development of Non-Carious Cervical Lesions: Abfraction. International Journal of Dentistry Article ID 234845

  43. Smith TM, Olejniczak AJ, Reid DJ, Ferrell RJ, Hublin JJ (2006) Modern human molar enamel thickness and enamel-dentine junction shape. Arch Oral Biol 51:974–995

    Article  CAS  PubMed  Google Scholar 

  44. Wigdor HA, Walsh JT Jr, John DB F, Visuri SR, Daniel F, Waldvogel JL (1995) Lasers in dentistry. Lasers Surg Med 16:103–133

    Article  CAS  PubMed  Google Scholar 

  45. Marcon G, Vidal B (1992) Characterization of zones resulting from the action of carbon dioxide laser impacts on dentinal hydroxyapatite. J Alloys Compd 188:147–151

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shahid Chamran University of Ahvaz, Iran, for the financial support and Ms. F. Khodarahmi from the Health Department of York University, Toronto, Canada, for the useful information about tooth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sabaeian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabaeian, M., Shahzadeh, M. Simulation of temperature and thermally induced stress of human tooth under CO2 pulsed laser beams using finite element method. Lasers Med Sci 30, 645–651 (2015). https://doi.org/10.1007/s10103-013-1390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1390-6

Keywords

Navigation