Skip to main content
Log in

Electrochemical properties of freestanding TiO2 nanotube membranes annealed in Ar for lithium anode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Freestanding and highly ordered TiO2 nanotube membranes were prepared via anodization and annealed at 450, 600, and 800 °C in air and Ar, respectively. Based on the results of XRD and SEM, the membranes annealed in Ar and air possessed different morphology and crystalline phases. Compared with the sample annealed in air, a trace amount of carbon on TiO2 membrane annealed in Ar was detected by EDS spectrum. Electrochemical measurements showed that TiO2 membrane annealed in Ar exhibited better discharge capacity and cyclic stability. The noticeably improved electrochemical performances were attributed to the presence of carbon which enhanced the surface electronic conductivity, the crystalline transformation, and the appropriate morphology, such as large pore, thin wall, and well tube structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi MG, Lee YG, Song SW, Kim KM (2010) Electrochim Acta 55:5975

    Article  CAS  Google Scholar 

  2. Armstrong AR, Armstrong G, Canales J, Bruce PG (2005) J Power Sources 146:501

    Article  CAS  Google Scholar 

  3. Sun CH, Yang XH, Chen JS, Li Z, Lou XW, Li CZ, Smith SC, Lu GQ, Yang HG (2010) Chem Commun 46:6129

    Article  CAS  Google Scholar 

  4. Park SJ, Paek YK, Lee H, Kim YJ (2010) Electrochem Solid-State Lett 13:A85

    Article  CAS  Google Scholar 

  5. Zhang XM, Huo F, Hu LS, Wu ZW, Chu PK (2010) J Am Ceram Soc 93:2771

    Article  CAS  Google Scholar 

  6. He BL, Dong B, Li HL (2007) Electrochem Commun 9:425

    Article  CAS  Google Scholar 

  7. Li SQ, Zhang GM, Guo DZ, Yu LG, Zhang W (2009) J Phys Chem C 113:12759

    Article  CAS  Google Scholar 

  8. Xiao P, Garcia BB, Guo Q, Liu DW, Cao GZ (2007) Electrochem Commun 9:2441

    Article  CAS  Google Scholar 

  9. Wei Z, Liu Z, Jiang RR, Bian CQ, Huang T, Yu AS (2010) J Solid State Electrochem 14:1045

    Article  CAS  Google Scholar 

  10. Ortiz GF, Hanzu I, Djenizian T, Lavela P, Tirado JL, Knauth P (2009) Chem Mater 21:63

    Article  CAS  Google Scholar 

  11. Fang HT, Liu M, Wang DW, Sun T, Guan DS, Li F, Zhou JG, Sham TK, Cheng HM (2009) Nanotechnol 20:225701

    Article  Google Scholar 

  12. Ortiz GF, Hanzu I, Knauth P, Lavela P, Tirado JL, Djenizain T (2009) Electrochim Acta 54:4262

    Article  CAS  Google Scholar 

  13. Fang D, Huang KL, Liu SQ, Li ZJ (2008) J Alloys Compd 464:L5

    Article  CAS  Google Scholar 

  14. Kim HS, Kang SH, Chung YH, Sung YE (2010) Electrochem Solid-State Lett 13:A15

    Article  CAS  Google Scholar 

  15. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Solid State Sci 8:113

    Article  CAS  Google Scholar 

  16. Liu DW, Xiao P, Zhang YH, Garcia BB, Zhang QF, Guo Q, Champion R, Cao GZ (2008) J Phys Chem C 112:11175

    Article  CAS  Google Scholar 

  17. Liu DW, Zhang YH, Xiao P, Garcia BB, Zhang QF, Zhou XY, Jeong YH, Cao GZ (2009) Electrochim Acta 54:6816

    Article  CAS  Google Scholar 

  18. Liu DW, Liu YY, Garcia BB, Zhang QF, Pan AQ, Jeong YH, Cao GZ (2009) J Mater Chem 19:8789

    Article  CAS  Google Scholar 

  19. Ratajska H (1992) J Therm Anal 38:2109

    Article  CAS  Google Scholar 

  20. Gesenhues U (1997) Solid State Ionics 101:1171

    Article  Google Scholar 

  21. Francisco MSP, Mastelaro VR (2002) Chem Mater 14:2514

    Article  CAS  Google Scholar 

  22. Rath C, Mohanty P, Pandey AC, Mishra NC (2009) J Phys D Appl Phys 42:205101

    Article  Google Scholar 

  23. Zhang YH, Xiao P, Zhou XY, Liu DW, Garcia BB, Cao GZ (2009) J Mater Chem 19:948

    Article  CAS  Google Scholar 

  24. Wang Y, Takahashi K, Lee K, Cao GZ (2006) Adv Funct Mater 16:1133

    Article  CAS  Google Scholar 

  25. Hu YS, Kienle L, Guo YG, Maier J (2006) J Adv Mater 18:1421

    Article  Google Scholar 

  26. Wang DH, Choi DW, Yan ZG, Viswanathan VV, Nie ZM, Wang CM, Song YJ, Zhang JG, Liu J (2008) Chem Mater 20:3435

    Article  CAS  Google Scholar 

  27. Yamada H, Yamato T, Moriguchi I, Kudo T (2004) Solid State Ionics 175:195

    Article  CAS  Google Scholar 

  28. Kang JW, Kim DH, Mathew V, Lim JS, Gim JH, Kim J (2011) J Electrochem Soc 158:A59

    Article  CAS  Google Scholar 

  29. Jiang CH, Wei MD, Qi ZM, Kudo T, Honma I, Zhou HS (2007) J Power Sources 166:239

    Article  CAS  Google Scholar 

  30. Stephenson DE, Hartman EM, Harb JN, Wheeler DR (2007) J Electrochem Soc 154:A1146

    Article  CAS  Google Scholar 

  31. Yoon SH, Kim HJ, Oh SM (2001) J Power Sources 94:68

    Article  CAS  Google Scholar 

  32. Wang J, Zhou YK, Hu YY, O’Hayre R, Shao ZP (2011) J Phys Chem C 115:2529

    Article  CAS  Google Scholar 

  33. Zhou YK, Cao L, Zhang FB, He BL, Li HL (2003) J Electrochem Soc 150:1246

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (No. 50972165) and Open-End Fund for the Valuable and Precision Instruments of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Liu, S., Huang, K. et al. Electrochemical properties of freestanding TiO2 nanotube membranes annealed in Ar for lithium anode material. J Solid State Electrochem 16, 723–729 (2012). https://doi.org/10.1007/s10008-011-1417-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1417-5

Keywords

Navigation