Skip to main content

Advertisement

Log in

Molecular analysis of the gene encoding a new chitinase from the marine psychrophilic bacterium Moritella marina and biochemical characterization of the recombinant enzyme

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The marine psychrophilic bacterium Moritella marina, isolated from a sample raised from a depth of 1,200 m in the northern Pacific Ocean, secretes several chitinases in response to chitin induction. A gene coding for an extracellular chitinolytic enzyme was cloned and its nucleotide sequence was determined. The chitinase gene consists of an open reading frame of 1,650 nucleotides and encodes a protein of 550 amino acids with a calculated molecular weight of 60.788 kDa, named MmChi60. MmChi60 has a modular structure consisting of a glycosyl-hydrolase family 18 N-terminal catalytic region as well as a C-terminal chitin-binding domain (ChBD). The new chitinase was purified to homogeneity from the intracellular fraction of Escherichia coli. The optimum pH and temperature of the recombinant MmChi60 were 5.0 and 28°C, respectively. The mode of action of the new enzyme on N-acetylchitooligomers, chitin polymers, and other substrates was examined, and MmChi60 was classified as an endochitinase. Thermal unfolding of MmChi60 was studied using differential scanning microcalorimetry and revealed that the protein unfolds reversibly at 65°C. On the basis of the crystal structure of the chitinase C of Streptomyces griseus, a homology-based 3-D model of the ChBD of the MmChi60 was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asgeirsson B, Nielsen BN, Hojrup P (2003) Amino acid sequence of the cold-active alkaline phosphatase from Atlantic cod (Gadus morhua). Comp Biochem Physiol B Biochem Mol Biol 136:45–60

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Furniss AL, Lee JV (1984) Genus Vibrio. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins Co., Baltimore, pp 518–538

    Google Scholar 

  • Bendt A, Huller H, Kammel U, Helmke E, Schweder T (2001) Cloning, expression and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi: 7. Extremophiles 5:119–126

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 256:1604–1607

    Google Scholar 

  • D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Feller G, Gerday C (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357:917–925

    Article  PubMed  CAS  Google Scholar 

  • Davis B (1964) Disc electrophoresis: method and application to human serum proteins. Ann N Y Acad Sci 121:404–427

    Article  PubMed  CAS  Google Scholar 

  • Fenice M, Selbmann L, Di Giambattista R, Federici F (1998) Chitinolytic activity at low temperature of an Antarctic strain A3 of Verticillium lecanii. Res Microbiol 149:289–300

    Article  PubMed  CAS  Google Scholar 

  • Folders J, Algra J, Roelofs MS, van Loon LC, Tommassen J, Bitter W (2001) Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. J Bacteriol 183:7044–7052

    Article  PubMed  CAS  Google Scholar 

  • Gal SW, Choi JY, Kim CY, Cheong YH, Choi YJ, Lee SY, Bahk JD, Cho MJ (1998) Cloning of the 52-kDa chitinase gene from Serratia marcescens KCTC2172 and its proteolytic cleavage into an active 35-kDa enzyme. FEMS Microbiol Lett 160:151–158

    PubMed  CAS  Google Scholar 

  • Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342:119–131

    PubMed  CAS  Google Scholar 

  • Gianese G, Bossa F, Pascarella S (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47:236–249

    Article  PubMed  CAS  Google Scholar 

  • Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl-hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    PubMed  CAS  Google Scholar 

  • Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agric Biol Chem 35:1154–1156

    CAS  Google Scholar 

  • Itoh Y, Watanabe J, Fukada H, Mizuno R, Kezuka Y, Nonaka T, Watanabe T (2006) Importance of Trp59 and Trp60 in chitin-binding, hydrolytic, and antifungal activities of Streptomyces griseus chitinase C. Appl Microbiol Biotechnol 72:1176–1184

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Grady KL, Suslow TV, Bedbrook JR (1986) Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J 5:467–473

    PubMed  CAS  Google Scholar 

  • Keyhani NO, Roseman S (1999) Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne T, Mavromatis K, Vorgias CE, Buchon L, Gerday C, Bouriotis V (2001) Cloning, sequences, and characterization of two chitinase genes from the Antarctic Arthrobacter sp. strain TAD20: isolation and partial characterization of the enzymes. J Bacteriol 183:1773–1779

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Zheng Y, Jiang Z, Ma Y, Wei D (2006) A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl Microbiol Biotechnol 73:349–355

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW, Nicholson H, Bectel WJ (1987) Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci USA 84:6663–6667

    Article  PubMed  CAS  Google Scholar 

  • McGrew BR, Green M (1990) Enhanced removal of detergent and recovery of enzymatic activity following SDS-PAGE: use of casein in gel wash buffer. Anal Biochem 189:68–74

    Article  PubMed  CAS  Google Scholar 

  • Mrabet NT, Van den Broeck A, Van den brande I, Stanssens P, Laroche Y, Lambeir AM, Matthijssens G, Jenkins J, Chiadmi M, van Tilbeurgh H (1992) Arginine residues as stabilizing elements in proteins. Biochemistry 8:2239–2253

    Article  Google Scholar 

  • Muzzarelli RAA (1997) Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci 53:131–140

    Article  PubMed  CAS  Google Scholar 

  • Muzzarelli R (2002) The discovery of chitin, a > 570 Megayear old polymer. In: Muzzarelli R, Muzzarelli C (eds) Chitosan in pharmacy and chemistry. Atec, Italy, pp 1–8

  • Niall HD (1973) Automated Edman degradation: the protein sequenator. Methods Enzymol 27:942–1010

    Article  PubMed  CAS  Google Scholar 

  • Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M, Watanabe T (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J Bacteriol 178:5065–5070

    PubMed  CAS  Google Scholar 

  • Orikoshi H, Baba N, Nakayama S, Kashu H, Miyamoto K, Yasuda M, Inamori Y, Tsujibo H (2003) Molecular analysis of the gene encoding a novel cold-adapted chitinase ChiB from a marine bacterium, Alteromonas sp. strain O-7. J Bacteriol 185:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Pace N, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    PubMed  CAS  Google Scholar 

  • Papanikolau Y, Prag G, Tavlas G, Vorgias CE, Oppenheim AB, Petratos K (2001) High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry 40:11338–11343

    Article  PubMed  CAS  Google Scholar 

  • Perrakis A, Tews I, Dauter Z, Oppenheim AB, Chet I, Wilson KS, Vorgias CE (1994) Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure 2:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Shigemasa Y, Minami S (1996) Applications of chitin and chitosan for biomaterials. Biotechnol Genet Eng Rev 1:383–420

    Google Scholar 

  • Shimahara K, Takiguchi Y (1988) Preparation of crustacean chitin. Methods Enzymol 161:417–423

    Article  CAS  Google Scholar 

  • Shine J, Dalgarno L (1975) Determination of cistron specificity in bacterial ribosomes. Nature 254:34–38

    Article  PubMed  CAS  Google Scholar 

  • Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57

    Article  PubMed  CAS  Google Scholar 

  • Spindler KD, Spindler-Barth M (1999) Inhibitors of chitinases. Extremophiles 87:201–209

    CAS  Google Scholar 

  • Suzuki Y, Mizutani Y, Tsuji T, Ohtani N, Takano K, Haruki M, Morikawa M, Kanaya S (2005) Gene cloning, overproduction, and characterization of thermolabile alkaline phosphatase from a psychrotrophic bacterium. Biosci Biotechnol Biochem 69:364–373

    Article  PubMed  CAS  Google Scholar 

  • Svitil AL, Kirchman DL (1998) A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases: implications for the ecology and evolution of 1,4-beta-glycanases. Microbiology 144:1299–1308

    PubMed  CAS  Google Scholar 

  • Terwisscha Van Scheltinga AC, Armand S, Kalk KH, Isogai A, Henrissat B, Dijikstra BW (1995) Stereochemistry of chitin hydrolysis by a plant chitinase/lysosome and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34:15619–15623

    Article  PubMed  CAS  Google Scholar 

  • Van den Burg B, Vriend G, Veltman OR, Venema G, Eijsink VG (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci USA 95:2056–2060

    Article  PubMed  Google Scholar 

  • Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J (2003) The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investigation of the active site. J Biol Chem 278:7531–7539

    Article  PubMed  Google Scholar 

  • Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, Gerday C, Haser R, Receveur-Bréchot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348:1211–1224

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Suzuki K, Oyanagi W, Ohnishi K, Tanaka H (1990) Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J Biol Chem 265:15659–15665

    PubMed  CAS  Google Scholar 

  • Watanabe T, Oyanagi W, Suzuki K, Ohnishi K, Tanaka H (1992) Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other prokaryotic chitinases and class III plant chitinase. J Bacteriol 174:408–414

    PubMed  CAS  Google Scholar 

  • Watanabe T, Ito Y, Yamada T, Hashimoto M, Sekine S, Tanaka H (1994) The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J Bacteriol 176:4465–4472

    PubMed  CAS  Google Scholar 

  • Yaish MW, Doxey AC, McConkey BJ, Moffatt BA, Griffith M (2006) Cold-active winter rye glucanases with ice-binding capacity. Plant Physiol 141:1459–1472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr George Nounesis for helping in DSC measurements, Dr Nikos Papandreou for helping in producing the ChBD model, and Dr Dimitrios Hatzinikolaou for helping in HPLC measurements. This study was supported by the State Scholarships Foundation (IKY) grant scholarship of Greece to Eleni Stefanidi, by the GSRT PENED to Constantinos E. Vorgias and Eleni Stefanidi, and by the EMBO and Marie Curie fellowships of EU to Eleni Stefanidi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos E. Vorgias.

Additional information

Communicated by G. Antranikian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanidi, E., Vorgias, C.E. Molecular analysis of the gene encoding a new chitinase from the marine psychrophilic bacterium Moritella marina and biochemical characterization of the recombinant enzyme. Extremophiles 12, 541–552 (2008). https://doi.org/10.1007/s00792-008-0155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0155-9

Keywords

Navigation