Skip to main content
Log in

Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The bacterial and archaeal communities of the sediments at the base of the Florida Escarpment (Gulf of Mexico, USA) were investigated using molecular phylogenetic analysis. The total microbial community DNA of each of three vertical zones (top, middle and bottom) of a sediment core was extracted and the 16S rRNA genes were amplified by PCR, cloned and sequenced. Shannon–Weaver Diversity measures of bacteria were high in all three zones. For the archaea, diversity was generally low, but increased with depth. The archaeal clonal libraries were dominated by representatives of four groups of organisms involved in the anaerobic oxidation of methane (ANME groups). Phylogenetic analysis of bacteria suggests the dominance of ε-proteobacteria in the top zone, the ε-, δ- and γ-proteobacteria in the middle zone and the δ-proteobacteria in the bottom zone of the core. Members of the Cytophaga–Flexibacter–Bacteroidetes group, the Chloroflexi/green non-sulfur bacteria, the Gram+ (Firmicutes), the Planctomyces, candidate division WS3 and Fusobacterium were also detected. Our data suggest that the community structure and diversity of microorganisms can shift greatly within small vertical distances, possibly in response to changes in the physical and chemical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alain K, Olagnon M, Desbruyeres D, Page A, Barbier G, Juniper SK, Quellerou J, Cambon-Bonavita MA (2002) Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42:463–476

    Article  Google Scholar 

  • Alain K, Zbinden M, Le Bris N, Lesongeur F, Querellou J, Gaill F, Cambon-Bonavita MA (2004) Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6:227–241

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  Google Scholar 

  • Chanton JP, Martens CS, Paull CK (1991) Control of pore-water chemistry at the base of the Florida Escarpment by processes within the platform. Nature 349:229–231

    Article  Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  PubMed  Google Scholar 

  • Cragg BA, Parkes RJ, Fry JC, Weightman AJ, Rochelle PA, Maxwell JR (1996) Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth Planet Sci Lett 139:497–507

    Article  Google Scholar 

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510

    PubMed  Google Scholar 

  • Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in the polymerase chain reaction. Science 252:1643–1651

    PubMed  Google Scholar 

  • Etchebehere C, Errazquin M, Dabert P, Muxi L (2002) Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiol Ecol 40:97–106

    Article  Google Scholar 

  • Finster K, Liesack W, Tindall BJ (1997) Sulfurospirillum arcachonense sp. nov., a new-microaerophilic sulfur-reducing bacterium. Int J Syst Bacteriol 47:1212–1217

    PubMed  Google Scholar 

  • Freitag TE, Prosser JI (2003) Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl Environ Microbiol 69:1359–1371

    Article  PubMed  Google Scholar 

  • Fuhrman JA, Davis AA (1997) Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285

    Google Scholar 

  • Galtier N, Gouy M, Gaultier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    PubMed  Google Scholar 

  • Galushko A, Minz D, Schink B, Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1:415–420

    Article  PubMed  Google Scholar 

  • Girguis P, Orphan V, Hallam S, DeLong E (2003) Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol 69:5472–5482

    Article  PubMed  Google Scholar 

  • Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69:5483–5491

    Article  PubMed  Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokshar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis using environmental genomics. Science 305:1457–1462

    Article  PubMed  Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  PubMed  Google Scholar 

  • Hugenholtz P, Pace NR (1996) Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol 14:190–197

    Google Scholar 

  • Inagaki F, Sakihama Y, Inoue A, Kato C, Horikoshi K (2002) Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol 4:277–286

    Article  PubMed  Google Scholar 

  • Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805

    Article  PubMed  Google Scholar 

  • Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K, Nunoura T, Nealson KH, Horikoshi K (2004) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, the Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70:7445–7455

    Article  PubMed  Google Scholar 

  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20:269–294

    Article  Google Scholar 

  • Knittel K, Lösekann T, Boetious A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  PubMed  Google Scholar 

  • LaMontagne MG, Leifer I, Bergmann S, Van De Werfhorst LC, Holden PA (2004) Bacterial diversity in marine hydrocarbon seep sediments. Environ Microbiol 6:799–808

    Article  PubMed  Google Scholar 

  • Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH (2001) Bacteria and archaea physically associated with Gulf of Mexico gas hydrates. Appl Environ Microbiol 67:5143–5153

    Article  PubMed  Google Scholar 

  • Larkin JM, Henk MC (1996) Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico. Microsc Res Tech 33:23–31

    Article  PubMed  Google Scholar 

  • Li L, Guezennec J, Nichols P, Henry P, Yanagibayashi M, Kato C (1999a) Microbial diversity in Nankai Trough sediments at a depth of 3,843 m. J Oceanogr 55:635–642

    Article  Google Scholar 

  • Li L, Kato C, Horikoshi K (1999b) Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8:659–677

    Article  Google Scholar 

  • Li L, Kato C, Horikoshi K (1999c) Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1:391–400

    Google Scholar 

  • Longnecker K, Reysenbach A-L (2001) Expansion of the geographic distribution of a novel lineage of the epsilon Proteobacteria to a hydrothermal vent on the Southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293

    Article  PubMed  Google Scholar 

  • López-Garcia P, López-López A, Moreira D, Rodríguez-Valera F (2001) Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol Ecol 36:193–202

    Article  PubMed  Google Scholar 

  • Marchesi JR, Weightman AJ, Cragg BA, Parkes RJ, Fry JC (2001) Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol Ecol 34:221–228

    Article  PubMed  Google Scholar 

  • Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • Martens CS, Chanton JP, Paull CK (1991) Biogenic methane from abyssal brine seeps at the base of the Florida Escarpment. Geology 19:851–854

    Article  Google Scholar 

  • Mills HJ, Hodges C, Wilson K, MacDonald IR, Sobecky P (2003) Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol 46:39–52

    Article  Google Scholar 

  • Miroshnichenko ML, Kostrikina NA, Chernyh NA, Pimenov NV, Tourova TP, Antipov AN, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA (1995) Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329

    Article  Google Scholar 

  • Mullins TD, Britschgi TB, Krest RL, Giovannoni SJ (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158

    Google Scholar 

  • Orphan VJ, Hinrichs KU, Ussler W III, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001a) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934

    Article  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001b) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  Google Scholar 

  • Orphan VJ, House CH, Hinrichs CU, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99:7663–7668

    Article  PubMed  Google Scholar 

  • Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP, Golubic S, Hook JE, Sikes E, Curray J (1984) Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226:965–967

    Google Scholar 

  • Pielou E (1966) The measure of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Polz MF, Cavanaugh CM (1995) Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci USA 92:7232–7236

    PubMed  Google Scholar 

  • Radeva G, Selenska-Pobell S (1999) Bacterial diversity in drain waters of several uranium waste piles. Annual Report of the Institute of Radiochemistry 56

  • Rappé M, Giovannoni S (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    PubMed  Google Scholar 

  • Reed DW, Fuji AY, Delwiche ME, Blackwelder DB, Sheridan PP, Uchida T, Colwell FS (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a fore-arc basin. Appl Environ Microbiol 68:3759–3770

    Article  PubMed  Google Scholar 

  • Reysenbach A-L, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal ineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806

    Article  PubMed  Google Scholar 

  • Rudolph C, Wanner G, Huber R (2001) Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67:2336–2344

    Article  PubMed  Google Scholar 

  • Schumacher W, Kroneck PMH, Pfennig N (1992) Comparative systematic study on Spirillum-5175, Campylobacter and Wolinella species. Description of Spirillum-5175 as Sulfurospirillum deleyianum gen. nov., sp. nov. Arch Microbiol 158:287–293

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • So C, Young L (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976

    PubMed  Google Scholar 

  • Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA:DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    Google Scholar 

  • Steffan R, Atlas R (1991) Polymerase chain reaction: applications in environmental microbiology. Annu Rev Microbiol 45:137–161

    Article  PubMed  Google Scholar 

  • Stolz J, Ellis D, Blum J, Ahmann D, Lovley D, Oremland R (1999) Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. Int J Syst Evol Microbiol 49:1177–1180

    Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    PubMed  Google Scholar 

  • Teske A, Hinrichs K, Edgcomb V, Gomez AD, Kysela D, Sylva S, Sogin M, Jannasch H (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    Article  PubMed  Google Scholar 

  • Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y (2003) Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Ecol 218:167–174

    Article  Google Scholar 

  • Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145:3305–3315

    PubMed  Google Scholar 

  • Urakawa H, Yoshida T, Nishimura M, Ohwada K (2000) Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling. Environ Microbiol 2:542–554

    Article  PubMed  Google Scholar 

  • Vetriani C, Jannasch H, MacGregor B, Stahl D, Reysenbach A-L (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384

    PubMed  Google Scholar 

  • Voordeckers J, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, hemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779

    Article  PubMed  Google Scholar 

  • Weisburg W, Barns S, Pelletier D, Lane D (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  Google Scholar 

  • Woese C (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Cindy Van Dover for collecting the samples used in this study. We would also like to thank the captain and crew of the R/V Atlantis and the crew and pilots of the deep-submergence vehicle Alvin for their skillful work at sea. This research was supported by NSF Grants MCB 04-56676 (CV), OCE 03-27353 (CV and RAL), ESI 00-87679 (RAL), OCE 95-29819 (RAL) and by the New Jersey Agricultural Experiment Station (CV and RAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Vetriani.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, A.J., Lutz, R.A. & Vetriani, C. Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles 10, 199–211 (2006). https://doi.org/10.1007/s00792-005-0488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0488-6

Keywords

Navigation