Skip to main content

Advertisement

Log in

Genetic structure of disjunct Argentinean populations of the subtropical tree Anadenanthera colubrina var. cebil (Fabaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Anadenanthera colubrina var. cebil is a native South American tree species inhabiting seasonally dry tropical forests (SDTFs). Its current disjunct distribution presumably represents fragments of a historical much larger area of this forest type, which has also been highly impacted by human activities. In this way the hypothesis of this study is that the natural populations of A. colubrina var. cebil from Northern Argentina represent vestiges of ancient fragmentation, but they are additionally influenced by a certain degree of gene flow among them. We aimed to analyze the genetic structure of both nuclear and chloroplast DNA to evaluate the relative role of ancient and recent fragmentation on intraspecific diversity patterns. Sixty-nine individuals of four natural populations were analyzed using eight nuclear microsatellites (ncSSR) and four chloroplast microsatellite loci (cpSSR). The level and distribution of genetic variation were estimated by standard population genetic parameters and Neighbor Joining as well as Bayesian analyses. The eight ncSSR loci were highly polymorphic, while genetic diversity of cpSSRs was low. Nuclear SSRs displayed lower genetic differentiation among populations than cpSSR haplotypes (F ST 0.11 and 0.95, respectively). However, high differentiation between phytogeographic provinces was observed in both genomes. The high genetic differentiation detected emphasizes the role of ancient fragmentation. However, the Paranaense province also shows the effects of recent fragmentation on genetic structure, whereas gene flow by pollen preserves the effects of genetic drift in the Yungas province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham de Noir F, Bravo S, Abdala R (2002) Mecanismos de dispersión de algunas especies leñosas nativas del chaco occidental y serrano. Quebracho 9:140–150

    Google Scholar 

  • Andrianoelina O, Favreau B, Ramamonjisoa L, Bouvet JM (2009) Small effect of fragmentation on the genetic diversity of Dalbergia monticola, an endangered tree species of the eastern forest of Madagascar, detected by chloroplast and nuclear microsatellites. Ann Bot 104(6):1231–1242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrandeguy ME, García MV, Argüelles CF, Cervigni GD (2011) Genetic diversity of Anadenanthera colubrina Vell. (Brenan) var cebil, a tree species from the South American subtropical forest as revealed by cpSSR markers. Silvae Genet 60:123–132

    Google Scholar 

  • Barrandeguy ME, Prinz K, García MV, Finkeldey R (2012) Development of microsatellite markers for Anadenanthera colubrina var. cebil (Fabaceae), a native tree from South America. Am J Bot 99(9):e372–e374

    Article  PubMed  Google Scholar 

  • Born C, Kjellberg F, Chevallier M, Vignes H, Dikangadissi J, Sanguié J, Wickings EJ, Hossaert-Mckey M (2008) Colonization processes and the maintenance of genetic diversity: insights from a pioneer rainforest tree Aucoumea klaineana. Proc R Soc 275:2171–2179

    Article  Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    Article  CAS  PubMed  Google Scholar 

  • Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kappelle M, Brown AD (eds) Bosques nublados del Neotrópico. Editorial IMBIO, Costa Rica, pp 623–658

    Google Scholar 

  • Caetano S, Prado D, Pennington RT, Beck S, Oliveira Filho A, Spichiger R, Naciri Y (2008) The history of Seasonally Dry Tropical Forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Mol Ecol 17:3147–3159

    Article  CAS  PubMed  Google Scholar 

  • Chapuis M, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chapuis MP, Lecoq M, Michalakis Y, Loiseau A, Sword GA, Piry S, Estoup A (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Mol Ecol 17(16):3640–3653

    Article  PubMed  Google Scholar 

  • Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA (2010) The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186:983–995

    Article  PubMed Central  PubMed  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. Heredity 100(1):106–113

    Article  CAS  Google Scholar 

  • Cialdella A.M (2000) Flora Fanerogámica Argentina. Proflora. Fascículo 67: Fabaceae Subfamilia Mimosoideae 1–10

  • Collevatti RG, Terribile LC, Lima-Ribeiro MS, Nabout JC, de Oliveira G, Rangel TF, Rabelo SG, Diniz-Filho JAF (2012) A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol Ecol 21:5845–5863

    Article  PubMed  Google Scholar 

  • Corander J, Marttinen P, Mäntyniemi S (2006) Bayesian identification of stock mixtures from molecular marker data. Fish B 104:550–558

    Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75(10):1443–1458

    Article  Google Scholar 

  • Debout GD, Doucet JL, Hardy OJ (2011) Population history and gene dispersal inferred from spatial genetic structure of a Central African timber tree, Distemonanthus benthamianus (Caesalpinioideae). Heredity 106:88–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Bitetti MS, Placci G, Dietz LA (2003) Una visión de biodiversidad para la ecorregión del Bosque Atlántico del Alto Paraná: diseño de un paisaje para la conservación de la biodiversidad y prioridades para las acciones de conservación. World Wildlife Fund, Washington, D.C.

    Google Scholar 

  • Dutech C, Seiter J, Petronelli P, Joly HI, Jarne P (2002) Evidence of low gene flow in a neotropical clustered tree species in two rainforest stands of French Guiana. Mol Ecol 11:725–738

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, von Holdt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol 10:564–567

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finkeldey R, Hattemer HH (2007) Tropical forest genetics. Springer, Heidelberg

    Book  Google Scholar 

  • Gascuel O (1997) Concerning the NJ algorithm and its unweighted version, UNJ. In: Boris M, McMorris FR, Roberts FS, Rzhetsky A (ed) Mathematical Hierarchies and Biology. DIMACS workshop, Series in discrete mathematics and theoretical computer science. Bull Amer Math Soc pp 149–170

  • Gillet E, Gömöry D, Paule L (2005) Measuring genetic variation within and among populations at marker loci. In: Geburek T, Turok J (eds) Conservation and Management of forest genetic resource in Europe. Arbora Publishers, Zvolen, pp 237–270

    Google Scholar 

  • Goudet J (1995) FSTAT (vers.2.9.3.2): a computer program to calculate F statistics. Heredity 86:485–486

    Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manag 197:323–335

    Article  Google Scholar 

  • Hartl DL, Clark AG (2007) Principles of population genetics. Sinauer Associates, Inc Publishers, Sunderland

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hewitt G (2004) The structure of biodiversity-insights from molecular Phylogeography. Front Zool 1:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Holsinger KE, Lewis PO (2003) Hickory: a package for analysis of population genetic data version 1.1. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut USA. http://darwin.eeb.uconn.edu/hickory/hickory.html

  • Inza MV, Zelener N, Fornes L, Gallo LA (2012) Effect of latitudinal gradient and impact of logging in genetic divertisy of Cedrela lilloi along the Argentina Yungas Rainforest. Ecol Evol 2(11):2722–2736

    Article  PubMed Central  PubMed  Google Scholar 

  • Justiniano MJ, Fredericksen TS (1998) Ecologia y silvicultura de especies menos conocidas Curupaú Anadenanthera colubrina (Vell.Conc.) Benth. Mimosoideae Proyecto de Manejo Forestal Sostenible (BOLFOR). Santa Cruz, Bolivia

  • Kasturi J, Acharya R, Ramanathan M (2003) An information theoretic approach for analyzing temporal patterns of gene expression. Bioinformatics 19(4):449–458

    Article  CAS  PubMed  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Manel S, Gaggiotti O, Waples R (2005) Assignment methods: which approaches best address which biological questions? Trends Ecol Evol 20:136–142

    Article  PubMed  Google Scholar 

  • McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10(5):198–202

    Article  CAS  PubMed  Google Scholar 

  • Muller F, Voccia M, Ba A, Bouvet JM (2009) Genetic diversity and gene flow in a Caribbean tree Pterocarpus officinalis Jacq.: a study based on chloroplast and nuclear microsatellites. Genetica 135:185–198

    Article  CAS  PubMed  Google Scholar 

  • Naciri Y, Caetano S, Pennington RT, Prado D, Spichiger R (2006) Population Genetics and inference of ecosystem history: an example using two neotropical seasonally dry forest species. In: Pennington P, Lewis GP, Ratter JA (eds) Neotropical Savannas and Seasonally dry forest: plant diversity, biogeography, and conservation. The Systematics Association Special, 69th edn. Taylor and Francis Group, London

    Google Scholar 

  • Ndiade-Bourobou D, Hardy OJ, Favreau B, Moussavou H, Nzengue E, Mignots A, Bouvet JM (2010) Long distance seed and pollen dispersal inferred from spatial genetic structure in the very low-density rainforest tree, Baillonella toxisperma Pierre, in Central Africa. Mol Ecol 19:4949–4962

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Pakkad G, Ueno S, Yoshimaru H (2008) Genetic differentiation of Quercus semiserrata Roxb. In northern Thailand revealed by nuclear and chloroplast microsatellite markers. For Ecol Manag 255:1067–1077

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pennington RT, Lavin M, Prado DE, Pendry CA, Pell SK (2004) Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philos Trans R Soc Lond 359:515–537

    Article  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity. Evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12(4):844–855

    Article  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  CAS  PubMed  Google Scholar 

  • Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Mo Bot Gard 80:902–927

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Provan J, Soranzo N, Wilson NJ, Golstein D, Powel W (1999) A low rate for chloroplast microsatellites. Genetics 153:943–947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quiroga MP, Pacheco S, Malizia L, Premoli AC (2012) Shrinking Forests under Warming: evidence of Podocarpus parlatorei (pino del cerro) from the Subtropical Andes. J Hered 103(5):682–691

    Article  PubMed  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2008) An update on chloroplast genomes. Plant Systematic Evol 271:101–122

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Heredity 86:248–249

    Google Scholar 

  • Shama LS, Kubow KB, Jokela J, Robinson CT (2011) Blottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations. Evol Biol 11:278

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24(21):2498–2504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Templeton AR (2006) Population genetics and microevolutionary theory. Wiley-Liss Publication, New Jersey

    Book  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • von Altschul SR (1964) A taxonomic study of the genus Anadenanthera. Contr Gray Herb 193:3–65

    Google Scholar 

  • Weising K, Gardner R (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphism in chloroplast genomes of dicotyledonous. Genome 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW (2011) Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecol Biogeogr 20:272–288

    Article  Google Scholar 

  • White T, Adams W, Neale DB (2007) Forest Genetics. CAB International Publishing, Cambridge

    Book  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special acknowledgment is given to Alexandra Dolynska for technical assistance in the laboratory. This paper represents a portion of the doctoral research of M.E. Barrandeguy who received a short-term fellowship provided by the German Academic Exchange Service (DAAD). Additional support was provided by a Doctoral fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comité Ejecutivo de Desarrollo e Innovación Tecnológica (CEDIT) from Argentina. This study has been partially funded by Grants from CONICET to M.V.García (PIP No. 114-200901-00110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Barrandeguy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrandeguy, M.E., García, M.V., Prinz, K. et al. Genetic structure of disjunct Argentinean populations of the subtropical tree Anadenanthera colubrina var. cebil (Fabaceae). Plant Syst Evol 300, 1693–1705 (2014). https://doi.org/10.1007/s00606-014-0995-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-0995-y

Keywords

Navigation